Tag Archives: Energy

Methane: There ought to be a law

Regulators in Minnesota made the bone headed decision to approve the building of a new natural gas plant on the Minnesota-Wisconsin border near Duluth. They are idiots. There is no calculation that requires or even strongly suggests that this is a good idea. It has already been determined that this plant is not necessary. This is just the petroleum industry getting its way. I call for an investigation of the three (out of five) individuals who voted for this lame brained scheme. I want to know what stocks they own, and I want to see their bank records for the last, and next, five years.

Meanwhile, I call on Legislators in Minnesota to pass a law stating that we can not add any more fossil fuel sources into our energy mix, in utilities within or overlapping with the state of Minnesota. We need that bill passed during the next legislative session, to stop this plant and similar ideas in the fiture.

The building of this particular natural gas plant is not inevitable. It still has to be approved on the Wisconsin side of the border. From NPR:

If Wisconsin regulators approve the plan, the new power plant would produce at least 525 megawatts of electricity. Minnesota Power and its ratepayers would be on the hook for half the $700 million cost.

Minnesota Power covers roughly a third of the state, mostly in the northeastern quadrant of Minnesota, from Little Falls in the south to International Falls in the north and over to Duluth and up to Canada. Its customers include large taconite mines and power plants.

PUC regulators heard final arguments in the case earlier this month. Commissioners also decided Monday that the plan did not need to undergo additional environmental analysis, a decision that paved the way for its approval vote.

Methane is not a bridge fuel. It is a fossil fuel, and a greenhouse gas.

Were the solar plants hit by Florence blown into oblivion?

No.

Faced with Hurricane Florence’s powerful winds and record rainfall, North Carolina’s solar farms held up with only minimal damage while other parts of the electricity system failed, an outcome that solar advocates hope will help to steer the broader energy debate….

When Florence made landfall on Sept. 14, it caused power outages across the region. As energy experts point out, the most vulnerable part of the system is not new at all: it’s the power lines and other equipment that transport electricity to customers.

Rooftop solar did ok as well.

Rooftop solar companies, such as Renu Energy Solutions in Charlotte, say there was little damage to their customers’ home solar systems. However, installers in some of the hardest-hit areas, such as Cape Fear, did not respond to messages seeking comment and there is a higher likelihood of damage there.

So, we’ll see how that goes, but I imagine the biggest problem for rooftop solar is a tree falling on the house, and when that happens, the home owner may have a bigger problem than some solar panels getting smashed.

The details are all here, in this story at Inside Climate News: Solar Energy Largely Unscathed by Hurricane Florence’s Wind and Rain

To save the planet, this is what we have to do everywhere, all the time.

A huge amount of energy is spent going to the store. The grocery store, the hardware store, all the stores. The amount of energy spent to get an object to the store for you to buy is big, but this process is on average highly efficient. A train can hold a lot of objects, and pushing a train down the tracks is highly efficient. Also, we will hopefully eventually be running trains entirely on a combination of electricity delivered to the train indirectly, batteries, and bio-fueled generators on board. Delivering object for you to buy at the store is already efficient, but it will become more efficient with a relatively small number of (big) step.

But then everybody leaves their home and drives various distances to various stores. When I was a kid, there were two grocery stores in our neighborhood. One had no parking lot, the other had room for about five or six cars, but nobody drove to either one. We used those two wheel carts you drag along to the store (or laundromat). When you get to the grocery store, you fold the cart up and hook it to a push car, then, when you pack up your groceries, they go in that two wheeler and you drag it home. Everybody did that all the time. It was strange to drive your car to the grocery store.

I remember when my parents started to drive to get groceries. Instead of going to the store on foot (or more likely, sending one of the offspring to the store with a list), they would drive out to the edge of town to a large warehouse discount store that had sprung up, like a Cosco. Oddly, large suburban style grocery stores emerged, in my world, after these edge-of-town discount store. My parents would drive the station wagon out there, spend all day, come back and and fill the freezer and cupboards. Maybe once every six weeks. In between times, for milk and other perishables that you can’t freeze, it would be walking to the A&P. So that was all pretty efficient.

But today, tens of millions of Americans get in a car and drive a few miles to pick up some object or bunch of objects at the stores. The energy spent to do that is large. The total amount of energy we spend going to the store to get objects is probably less than the total amount of energy spent to get objects from producers (via warehouses) to stores, but not by as much as you might think.

One way to solve this is to not go to the store in a car and by an object. Order it on line. The delivery will be more efficient. Or, in some cases, go to the store on foot, bike, or public transit, get your your stuff in a big pile, and then have the store deliver it to your house. And, have all the delivery done by electric vehicles charged with energy produced without fossil carbon.

I envision a future in which we abandon mail boxes and replace them with small rooms with an indoor and outdoor access, some insulation and modest climate control, a place to put frozen stuff, refrigerator stuff, other stuff. That’s where the grocery store delivery service drops your stuff.

Or, if you are in need of new flat packed furniture, Ikea:

In a couple of years, if you buy a Malm bed at Ikea in Brooklyn and opt for delivery, Ikea will probably drop it off in an electric truck. The company is transitioning to zero-emissions delivery in New York, Los Angeles, Amsterdam, Paris, and Shanghai by 2020. By 2025, Ikea aims to do the same for every store worldwide.

“Climate change is no longer just a threat, but it’s a reality,” says Jesper Brodin, CEO of Ikea Group. “We see how that impacts our business, our customers, and our coworkers more or less everyday . . . We want to be a leader, and take action, and speed up our plans.”

The company had announced earlier this year that it would shift to zero-emissions delivery by 2025, but now plans to work more quickly in key cities.

But where do you get one of those nice delivery receiving futuristic mail boxes with the climate control?

Here you go:

Minnesota Energy: Decarbonize, locally produce

The McKnight Foundation and GridLab contracted Vibrant Clean Energy, LLC, to prepare a report called Minnesota’s Smarter Grid: Pathways Towards a Clean, Reliable and Affordable Transportation and Energy System. Among other things, the report says:

The study has shown that the economy in Minnesota can decarbonize by 80% (from 2005 levels) by 2050. All the decarbonization pathways involve deeper energy efficiency of existing electric demands (particularly in the industrial sector), heavy electrification of transportation, transitioningheating of space and water from natural gas and resistive heating to heat pumps, building new zero-emission generation technologies, and retiring fossil-fuel generation.

The electrification of other sectors provides the electricity sector with new demands, which have different load profiles to existing demands and have greater flexibility potential. These new loads provide increasing sales for the electricity sector to invest against. Further, the greater flexibility allows the electricity grid to incorporate more variable resources, which are low-cost and nearzero emissions. Further, the electrification provides net cost savings for consumers because the reduction in spending on other energy supplies (natural gas for heating and gasoline for transportation) outweighs the additional spending in the electricity sector for the electrified loads.

You can get the PDF here.

How to save what is left of Nuclear Energy

In the past, most Americans (and probably many Europeans and Japanese) were either for or against nuclear. These days, a large middle area has opened up because nuclear is not fossil fuel, and may have an important role in future energy economies.

Having said that, building new nuclear plants have mostly moved into the pipe dream category. It is jut not happening. But maintaining and continuing to run existing plants is probably important, no what you think about nukes.

Here’s the thing. There are two reasons to shut down an existing plant. 1) It is too old or otherwise unsafe and needs to be closed. This is fairly rare but will become more common over the ext 30 years, and eventually, every one will be shuttered and converted over to nuclear waste storage facility. 2) it is too damn expensive to run.

We need to shut down the type 1 plants. We can have a conversation some other time about the strategy of replacing such plants with new nukes. We should not be shutting down type 2 plants now, because that puts pressure on the industry, which is relatively dumb when it comes to making long term decisions, to maintain or even build new methane, oil, or even coal plants.

But how do we save these type 2 plants from premature decommissioning?

With a carbon dividend. (I do not call this a carbon fee and divided or carbon tax because those terms are inaccurate. See: “The Carbon Dividend Is Not A Tax“)

This post at Think Progress outlines the problem and the solution. Warning: Ironies are exposed, so wear your face gear.

Decarbonizing the not so low hanging fruit

We, we humans, need to stop releasing fossil carbon into the atmosphere well before 2100 or we are doomed.

The main reason we are not heading headlong into that project, getting it done right away, is because of the fossil fuel industry combined with a deep seated self-hate on the part of Republicans, who would rather end civilization and make all of our children suffer than to do something an environmentalist might suggest.

The road to decarbonization is the same as the road to electrification plus the road to making all of our electricity with something other than coal, oil, methane, and the like. This could involve a certain amount of liquid fuel that is generated using wind and solar power, and magical bacteria or something, perhaps with a mix of plant material or other bio-sources.

There are easy ways to do part of this fast. For example, building wind farms is easy and produces piles of electricity. Same with solar. “But wait wait,” you say. “Those sources are intermittent, we can’t…” But I say to you, if this is your first thought, you are out of date (or are a Republican?). Solar and wind are indeed intermittent, but we can still use them as the backbone of our power system. This is a problem, but not one that can’t be figured out and has been, in fact, largely solved using a number of approaches. And, that is off the topic of this post.

We can also put solar panels on our roofs to a much greater degree than we do now. It has been estimated that a reasonable, not overdone but pretty thorough, deployment of PV panels on the roofs of America would cover about 40% of our in-building electrical needs as they stand now. This added to the eventual (though expensive, yet easy) deployment of heat pumps and total electrification of everything in those buildings probably averages out (the heat pumps reduce energy demand, the electrification increases demand for electricity as compared to gas or oil).

There are other types of low hanging fruit as well, such as increasing efficiency, telecommuting.

But what about the hard to do stuff, the major uses of energy that can’t be changes so easily?

There is a new review paper out in Science that discusses this. The paper is:

Net-zero emissions energy systems, boy Steven Davis, Nathan Lewis, Matthew Shaner, et al. Science 360(6396).

If you click on that link, you might be able to see the paper, as I think it is OpenAccess.

The paper identifies the following areas as tough nuts to crack:

  • Aviation
  • Long-distance transport
  • Shipping
  • Steel production
  • Cement production

It identifies the following technologies as helpful:

  • Hydrogen and ammonia fuels
  • Biofuels
  • Synthetic hydrocarbons
  • Direct solar fuels

The paper also identifies “highly reliable electricity” and energy storage as key areas of further development.

I do not see any major surprises in this paper, but that is because it is a review paper. I think it is a useful read to help organize one’s thinking on the transitions we will attempt, should the Republicans allow it, over the next decades.

Coal Mine Safety

Remember Don Blankenship? He’s this guy:

On Wednesday West Virginia station WCHS reported that the former Massey Energy CEO, fresh off a one-year stint in a federal prison for conspiring to commit mine-safety violations in the run-up to the deadliest mining disaster in decades, has filed paperwork to run in next year’s Republican Senate primary.

Here’s a refresher on the Upper Big Branch disaster (60 minues/Anderson Cooper): Continue reading Coal Mine Safety

Trump Ruins Everything For Everybody (but good news from Minnesota)

Donald Trump went into a snit and his babysitter wasn’t around to control him, so he barged into a meeting and slapped high tariffs on metal imports. The stock market suffered a mini-crash, and according to some experts, 2 cents per watt have been added to utility scale solar projects. Continue reading Trump Ruins Everything For Everybody (but good news from Minnesota)

States Can Lead the Way on Climate Change

True that. In the US, energy policy and regulation happens much more at the state level than the federal level, and our federal government went belly up last January anyway. Some states will not lead, they will go backwards, but others will lead, and show the way.

So, here I want to highlight this new item in Scientific American by Rebecca Otto.

States Can Lead the Way on Climate Change
The Trump administration’s threats to abandon Obama’s Clean Power Plan and exit the Paris accords don’t necessarily mean all is lost

The word “corporation” does not appear in our Constitution or Bill of Rights. But as Rhode Island Sen. Sheldon Whitehouse notes in his book Captured, corporations had already grown so powerful by 1816 that Thomas Jefferson urged Americans to “crush in its birth the aristocracy of our moneyed corporations, which dare already to challenge our government to a trial of strength, and bid defiance to the laws of our country.”
Today the conflict between the unfettered greed of unregulated capitalism and the right of the people to regulate industry with self-governance has reached extreme proportions. Corporations now have more power than many nations and feel justified in manipulating democracy to improve their bottom lines instead of the common good.
Nowhere is this problem more pronounced than…

Then where? THEN WHERE??? Go read the original piece!

Top fossil fuel producers caused half of global warming, third of sea level rise

I’ll just put this item from UCS here for your interest:

FOR IMMEDIATE RELEASE

Study Finds Top Fossil Fuel Producers’ Emissions Responsible for as Much as Half of Global Surface Temperature Increase, Roughly 30 Percent of Global Sea Level Rise

Findings Provide New Data to Hold Companies Responsible for Climate Change

WASHINGTON (September 7, 2017)—A first-of-its-kind study published today in the scientific journal Climatic Change links global climate changes to the product-related emissions of specific fossil fuel producers, including ExxonMobil and Chevron. Focusing on the largest gas, oil and coal producers and cement manufacturers, the study calculated the amount of sea level rise and global temperature increase resulting from the carbon dioxide and methane emissions from their products as well as their extraction and production processes.

The study quantified climate change impacts of each company’s carbon and methane emissions during two time periods: 1880 to 2010 and 1980 to 2010. By 1980, investor-owned fossil fuel companies were aware of the threat posed by their products and could have taken steps to reduce their risks and share them with their shareholders and the general public.

“We’ve known for a long time that fossil fuels are the largest contributor to climate change,” said Brenda Ekwurzel, lead author and director of climate science at the Union of Concerned Scientists (UCS). “What’s new here is that we’ve verified just how much specific companies’ products have caused the Earth to warm and the seas to rise.”

The study builds on a landmark 2014 study by Richard Heede of the Climate Accountability Institute, one of the co-authors of the study published today. Heede’s study, which also was published in Climatic Change, determined the amount of carbon dioxide and methane emissions that resulted from the burning of products sold by the 90 largest investor- and state-owned fossil fuel companies and cement manufacturers.

Ekwurzel and her co-authors inputted Heede’s 2014 data into a simple, well-established climate model that captures how the concentration of carbon emissions increases in the atmosphere, trapping heat and driving up global surface temperature and sea level. The model allowed Ekwurzel et al. to ascertain what happens when natural and human contributions to climate change, including those linked to the companies’ products, are included or excluded.

The study found that:

<li>Emissions traced to the 90 largest carbon producers contributed approximately 57 percent?of the observed rise in atmospheric carbon dioxide, nearly 50 percent of the rise in global average temperature, and around 30 percent of global sea level rise since 1880.</li>


<li>Emissions linked to 50 investor-owned carbon producers, including BP, Chevron, ConocoPhillips, ExxonMobil, Peabody, Shell and Total, were responsible for roughly 16 percent of the global average temperature increase from 1880 to 2010, and around 11 percent of the global sea level rise during the same time frame.</li>


<li>Emissions tied to the same 50 companies from 1980 to 2010, a time when fossil fuel companies were aware their products were causing global warming, contributed approximately 10 percent of the global average temperature increase and about 4 percent sea level rise since 1880.</li>


<li>Emissions traced to 31 majority state-owned companies, including Coal India, Gazprom, Kuwait Petroleum, Pemex, Petroleos de Venezuela, National Iranian Oil Company and Saudi Aramco, were responsible for about 15 percent of the global temperature increase and approximately 7 percent of the sea level rise between 1880 and 2010.</li>

“Until a decade or two ago, no corporation could be held accountable for the consequences of their products’ emissions because we simply didn’t know enough about what their impacts were,” said Myles Allen, a study co-author and professor of geosystem science at the University of Oxford in England. “This study provides a framework for linking fossil fuel companies’ product-related emissions to a range of impacts, including increases in ocean acidification and deaths caused by heat waves, wildfires and other extreme weather-related events. We hope that the results of this study will inform policy and civil society debates over how best to hold major carbon producers accountable for their contributions to the problem.”

The question of who is responsible for climate change and who should pay for its related costs has taken on growing urgency as climate impacts worsen and become costlier. In New York City alone, officials estimate that it will cost more than $19 billion to adapt to climate change. Globally, adaptation cost projections are equally astronomical. The U.N. Environment Programme estimates that developing countries will need $140 billion to $300 billion annually by 2030 and $280 billion to $500 billion annually by 2050 to adapt.

The debate over responsibility for climate mitigation and adaptation has long focused on the “common but differentiated responsibilities” of nations, a framework used for the Paris climate negotiations. Attention has increasingly turned to non-state actors, particularly the major fossil fuel producers.

“At the start of the Industrial Revolution, very few people understood that carbon dioxide emissions progressively undermine the stability of the climate as they accumulate in the atmosphere, so there was nothing blameworthy about selling fossil fuels to those who wanted to buy them,” said Henry Shue, professor of politics and international relations at the University of Oxford and author of a commentary on the ethical implications of the Ekwurzel et al. paper that was published simultaneously in Climatic Change. “But circumstances have changed radically in light of evidence that a number of investor-owned companies have long understood the harm of their products, yet carried out a decades-long campaign to sow doubts about those harms in order to ensure fossil fuels would remain central to global energy production. Companies knowingly violated the most basic moral principle of ‘do no harm,’ and now they must remedy the harm they caused by paying damages and their proportion of adaptation costs.”

Had ExxonMobil, for example, acted on its own scientists’ research about the risks of its products, climate change likely would be far more manageable today.

“Fossil fuel companies could have taken any number of steps, such as investing in clean energy or carbon capture and storage, but many chose instead to spend millions of dollars to try to deceive the public about climate science to block sensible limits on carbon emissions,” said Peter Frumhoff, a study co-author and director of science and policy at UCS. “Taxpayers, especially those living in vulnerable coastal communities, should not have to bear the high costs of these companies’ irresponsible decisions by themselves.”

Ekwurzel et al.’s study may inform approaches for juries and judges to calculate damages in such lawsuits as ones filed by two California counties and the city of Imperial Beach in July against 37 oil, gas and coal companies, claiming they should pay for damages from sea level rise. Likewise, the study should bolster investor campaigns to force fossil fuel companies to disclose their legal vulnerabilities and the risks that climate change poses to their finances and material assets.

How to clean coal

It suddenly became apparent, just a couple of days ago when President Trump was ranting and raving at a political rally, that the man does not know what clean coal is.

This is a concern because his entire energy policy stems from the assumption that we can mine lots of coal in West Virginia and use that for energy, that this is OK because it will be clean coal.

The term clean coal has been used in three ways, but really, is correctly used in only one way (number 2 of the three below), and when used that way, it is still bogus.

1) The term clean coal, or phrases very close to it, have been used by the energy industry to refer to their cleaning up of coal plants to have them put fewer nasty particulates and chemicals into the air. Clean plants produce clean effluence while burning coal. This is nice and all, but it has nothing to do with the fundamental problem that burning coal is a major contribution to global warming, because when you burn coal you take Carbon that is attached mainly to other Carbon atoms in solid form, and combine it with Oxygen, to make heat and CO2. The CO2 is the greenhouse gas.

2) The term clean coal refers to burning coal and somehow making the CO2 not go into the atmosphere. A method that makes the Carbon not become CO2 is essentially impossible because it is the oxidation of the Carbon that is the energy production process. You can not turn coal into heat energy without making CO2. It. Is. Not. Possible. But, some say it is possible to make the CO2 go away or not be a problem in some other way. If we were talking about a small amount of CO2, that might be possible. We could store it underground or something (never mind that this takes energy too). But for burning a lot of coal, for keeping coal as a major part of our energy policy, we simply can’t do that. You cant store away a gazillaton of a gas every year and expect it to stay stored.

3) This is the newest definition. This is Trump’s definition. You dig the coal up, then you wash it so it is clean. Then you burn it and everything is fine.

Nope.

By the way, the photo above is of the harvesting of sea coal in Hartepool. That, apparently, was a thing.

Tesla Model 3 is Breakthrough Technology

The Tesla Model 3 will have a 215 mile range. Zero to sixty in 6 seconds, in case you ever have to do that. Seats five adults. Five star safety rating. Uses supercharging (so, if supercharged, charges in something like the time it takes to fill up a gas car IF you also use the bathroom, pick up a candy bar, there’s a few people in line …).

It cost the same as a lot of cars a lot of people buy: $35,000.

It is 100% electric.

You can’t have one yet, but if you really one one and work on it you might be able to get one by the end of the year. The first ones out will be distributed to their new owners Friday.

Trump, Perry, Energy, Climate, #Sad

Two items I know you’ll want to check out.

The ‘intellectual’ debate Rick Perry says he wants is already over

Last week, Energy Secretary Rick Perry told CNBC he considers his skepticism towards climate data to be a sign of a “wise, intellectually engaged person.” Yesterday, at a press briefing at the White House – it’s apparently supposed to be “Energy Week” – Perry used similar phrasing, calling for “an intellectual conversation” on global warming.

Four myths journalists should watch out for during Trump’s “Energy Week”

The White House has declared this to be “Energy Week” and is pushing a theme of “energy dominance,” with a particular emphasis on exports of natural gas. Three of President Trump’s cabinet members are out in force this week trying to spread misleading or false messages about energy and exports through the media.

“An energy-dominant America will export to markets around the world, increasing our global leadership and influence,” Energy Secretary Rick Perry, Interior Secretary Ryan Zinke, and Environmental Protection Agency Administrator Scott Pruitt wrote in a joint op-ed published Monday in The Washington Times.

Watch out for these myths:

Myth #1: Natural gas exports are good for ordinary Americans and the overall U.S. economy

Myth #2: Natural gas exports are good for the climate

Myth #3: Natural gas exports have been blocked until now

Myth #4: The U.S. can achieve “energy dominance”

The item at MMFA has the details.