Tag Archives: Green Energy

How the US Navy is Leading the Charge on Clean Energy and Climate Change

There will be a discussion on Climate Desk Live about this topic tomorrow, Feb 27th. Details and access to the event are HERE.

Increasingly, the US Navy is leading the charge towards clean energy, which can in turn impact national security an even climate change. Through investments in biofuels, construction of a more energy-efficient fleet, forward thinking about issues like rising sea levels and a melting Arctic, and commitments to reduce consumption and reliance on foreign oil, the Navy is leading the charge of a vast energy reform effort to “change the way the US military sails, flies, marches, and thinks.”

And here’s a fun, related video:

claimtoken-512d0aa6de0dc

Graphene: Big promise for new solar technologies

A big step in improving the efficiency of photovoltaic cells in on the horizon. A paper published over the weekend in Nature Physics describes the ability of a substance called Graphene to convert a high percentage of the energy from sunlight into electricity. Graphene uses more of each photon’s energy, and a wider range of photons of different energy levels (using a broad spectrum of the Sun’s energy), compared to existing solar cells. From the abstract of the paper:

The conversion of light into free electron–hole pairs constitutes the key process in the fields of photodetection and photovoltaics. The efficiency of this process depends on the competition of different relaxation pathways and can be greatly enhanced when photoexcited carriers do not lose energy as heat, but instead transfer their excess energy into the production of additional electron–hole pairs through carrier–carrier scattering processes. Here we use optical pump–terahertz probe measurements to probe different pathways contributing to the ultrafast energy relaxation of photoexcited carriers. Our results indicate that carrier–carrier scattering is highly efficient, prevailing over optical-phonon emission in a wide range of photon wavelengths and leading to the production of secondary hot electrons originating from the conduction band. As hot electrons in graphene can drive currents, multiple hot-carrier generation makes graphene a promising material for highly efficient broadband extraction of light energy into electronic degrees of freedom, enabling high-efficiency optoelectronic applications.

Peter Sinclair has summarized the info on Graphene and has links to various sources here.

K. J. Tielrooij,J. C. W. Song, S. A. Jensen, A. Centeno, A. Pesquera, A. Zurutuza Elorza, M. Bonn, L. S. Levitov & F. H. L. Koppens. Photoexcitation cascade and multiple hot-carrier generation in graphene. Nature Physics (2013) doi:10.1038/nphys2564. Source


Photo of solar cells credit: bkusler via Compfight cc

Helium-filled, high-altitude wind turbine prototype unveiled

An American company, Altaeros Energies, recently launched a prototype helium-shelled wind turbine that can be used at high altitudes. While the test run took place at 350ft above ground, the ultimate goal is a height of 1,000ft. Tethers send the converted power back to the ground. Compared with traditional wind turbines, the prototype garners twice as much energy, as wind is stronger at higher altitudes.

Sources: Green Tech Media, Smart Planet