Tag Archives: Green Energy

Climate and energy are becoming focal points in state political races

Just a pointer to my colleague John Abraham’s current post in The Guardian:

The latest example, Minnesota gubernatorial candidate Rebecca Otto has a strong clean energy proposal

As soon as Donald Trump won the presidential election, people in the US and around the world knew it was terrible news for the environment. Not wanting to believe that he would try to follow through on our worst fears, we held out hope.

Those hopes for a sane US federal government were misplaced. But they are replaced by a new hope – an emerging climate leadership at the state level and a continuation of economic forces that favor clean/renewable energy over dirty fossil fuels. In fact, it appears that some states are relishing the national and international leadership roles that they have undertaken. Support for sensible climate and energy policies is now a topic to run on in elections.

This change has manifested itself in American politics. One such plan stems from my home state, but it exemplifies work in other regions. I live in the state of Minnesota where we are gearing up for a gubernatorial election, which is where this plan comes from.

My state is well known as somewhat progressive, both socially and economically. The progressive policies resulted in a very strong 2007 renewable energy standard, which helped to reduce carbon pollution and create 15,000 jobs.

As an aside, it is really painful for me to…

Click here to find out about John’s pain!

A New North American Clean Energy Plan

Barack Obama, Justin Trudeau and Enrique Peña Nieto, have made a joint announcement. As reported by NPR:

President Obama and his counterparts from Canada and Mexico are preparing to unveil an ambitious new goal for generating carbon-free power when they meet this week in Ottawa.

The three leaders are expected to set a target for North America to get 50 percent of its electricity from nonpolluting sources by 2025. That’s up from about 37 percent last year.

Aides acknowledge that’s a “stretch goal,” requiring commitments over and above what the three countries agreed to as part of the Paris climate agreement.

The news reports and press information about this event note that the US currently produces about a third of its energy from non fossil fuel sources. Mexico produces less than 20% of its power this way, and Canada is at about 81%. A big part of this shift will involve shutting down coal plants and expanding wind and solar. However, this mix, as well as the proposed 50% of “clean energy,” may include biofuels, which are very limited in their effectiveness in combating climate change, Nuclear, which is diminishing in its importance, and possibly “carbon capture” which is not an energy source and not likely to have much impact because it essentially doesn’t work at any meaningful scale because of physics.

So, we will need to see some clarification in this area.

Low Hanging Fruit: A Very Healthy Diet for The Planet Earth

Michael Mann has an editorial on Scientific American’s site putting the well known 2.0C limit in perspective for the upcoming climate talks in Paris.

Mann makes a number of important points in his essay (read it here: Meeting a Global Carbon Limit Is Cheaper Than Avoiding One) but there is one point that I want to underscore.

The key factor is that there are technological innovations and economies of scale that emerge only in the course of actually doing something.

Here’s the thing. Let’s say you were suddenly in charge of one trillion dollars of money that could be used to address climate change. What would you spend the money on? Here are some suggestions.

1) Build machines that take CO2 out of the air.

2) Invest in the “next generation” of nuclear reactors.

3) Purchase a huge amount of deforested land and re-forest it.

4) Divide the money up among numerous research groups to develop as yet unknown clean energy technologies that may save us.

All those things are potentially good ideas, and we should probably think about doing all of them at some level. But that is not how you should spend your trillion dollars. The way you should spend your trillion dollars is to underwrite the cost of converting as many homes and businesses as you can to using passive geothermal heating and cooling, and to install photovoltaic on the roofs. Some of the money could also be used to switch internal combustion engines over to electric. Why do these things first? Because they are low hanging fruit. The results would be immediate. A home that uses passive geothermal will use about half, or less, of the fossil carbon for that purpose. A home that has fully deployed PV panels on the roof can cover the electricity for all of that home’s commuting costs and run the heating and cooling system, and a few other things, for much of the year. And so on. As long as our landscape is characterized by buildings with roofs that serve mainly to convert sunlight into heat, we can buy out that sunlight, harness it, and move towards a greater percentage of clean energy very very quickly.

At the same time, of course, we do want to do research on new technologies, perhaps even carbon capture (though I think that should be way down on the list). But there is so much we can do with existing technologies addressing existing needs. As Mann put it, “The obstacle is not a physical one—it is one of political and societal will.”

Clean Energy: The State of the States

One of the problems we have in making a quick transition to clean energy in the US is the fact that energy production and distribution is typically regulated by states, and some states are not as smart as other states. Or, if they are smart, they are controlled by political forces intent on maintaining fossil carbon based fuels as our primary energy source, which of course, is a totally bone-headed policy.

When it comes to the transition to clean energy, we can do this the easy way, or we can do this the hard way. The easy way is to encourage the picking of low hanging fruit, such as solar panels on flat spots, at the same time we work towards tackling some of the more expensive projects that require more up front investment but that will eventually pay off. The hard way, of course, is the total collapse of civilization. Most imaginable post apocalyptic worlds don’t use to much fossil fuel!

And, whether the hard way or the easy way is the most likely path at any moment in time is often a matter of what is happening on the state level. Here are a few examples of what is going on right now around the US.

In Maryland, a state commission is calling for the state to pledge slashing greenhouse gas emissions 40% by 2030. That sounds like a large amount, but it is actually a modest and easily attainable goal. They should probably be going for more.

The goal — which if passed into law would be one of the most ambitious set so far by a state — drew unanimous support of the 26-member panel, which includes lawmakers, environmentalists, representatives of business and labor, and top officials in the Hogan administration.

The recommendation is likely to lead to legislation in the General Assembly, which must decide next year whether to stick with the goal it set in 2009 of reducing climate-warming emissions 25 percent by 2020.

Meanwhile, Texas and California are leading the nation in carbon emissions. The overall pattern of carbon emissions by state (using two year old data because for some reason those who keep track of these things haven’t discovered twitter and spreadsheets) is largely a matter of population size and similar factors.

But while we might expect California to be high on the list, Texas is way way higher, to the point one wonders what they are up to down in the Lone Star State.

Data released this week by the administration shows each state’s energy-related carbon dioxide emissions between 1990 and 2013. Texas doesn’t just top the list, its emissions — 641 million metric tons of carbon dioxide — are almost double those of California, the nation’s second largest carbon emitter, which spewed 353 million metric tons of carbon dioxide into the atmosphere.

On a per-capita basis, Wyoming leads all the other states in greenhouse gas pollution.

In New Mexico, Santa Fe has an interesting program in mind. There, The Heath Foundation, a private 501c(3) representing the community interests of Jim Heath, has a plan. Here’s part of it:

  • HeathSUN will provide a complete rooftop photovoltaic solar system for homeowners in Santa Fe County at no charge to the customer. HeathSUN owns and maintains each rooftop solar system, and the ancillary metering and control equipment, and there’s no lien on the house.
  • Under HeathSUN’s set-up, customers will continue to have access to electricity from PNM when needed. For solar energy from the rooftop system, the customer pays HeathSUN 80 percent of the going PNM rate, so the solar power’s cost would rise and fall with how much PNM is charging. The customer gets separate bills from HeathSUN and PNM.
  • In a new twist, HeathSUN says there will be no “net metering” in this model, meaning no HeathSUN solar power would flow through a PNM meter, the standard way to provide a seamless household electrical system. When someone turns on an appliance in a HeathSUN house, technology in the home’s own electrical control box decides whether to pull from the rooftop solar system or from PNM…
  • In Hawaii, there is a plan to charge up some big batteries with a big solar array, for use to meet evening/nighttime demands.

    The nation’s leading residential installer is building the project near Lihu’e on Kaua’i’s southeast corner. The project includes a 13 MW photovoltaic solar array, but is unique in that it includes its own solution to the intermittency problem that solar power faces.

    The power generated by the PV cells will be used solely to charge a 13 MW battery array capable of providing 52 MWh to customers of Kauai Island Utility Cooperative (KIUC), the island’s sole electricity provider. That means the solar cells will charge the batteries during the height of the day, and the batteries will discharge the stored power to customers during the evening peak between 5 p.m. and 10 p.m.

    “Anyone that’s been out to Kauai will notice that they have a lot of solar on the island and really don’t have any appetite at all for solar at midday,” Rudd said. “If anything, they were already in a bit of a curtailment state during certain days. So, they love solar, they want more because it’s cheaper than what they otherwise would realize, but they don’t need it during the day.”

    New York State is working out the details of how to deploy meters to allow the grid to become smart.

    There is a big waste-to-energy project in the works in Oregon.

    And that is a sampling of the news that came across my desk just today.

    Saint Paul Saints Building With Solar Power

    You all know about the Saint Paul Aints. No, wait, I mean Saint Paul Saints. This is a local baseball team here in the Twin Cities. They are building a new stadium (much needed) right in the middle of Saint Paul to replace their old stadium out by the railroad tracks.

    What you may not know is that the Saints Stadium is going to be one of the greener sports stadiums built. Other people building stadiums should take note. From MPR News:

    St. Paul Saints stadium builders aim to make it a ‘green’ field

    … When the $62 million stadium opens in May, the home of the city’s minor league baseball team will take a major step forward as an environmentally friendly sports facility.

    A canopy of photovoltaic solar panels next to the baseball field will generate 103 kilowatts of power for Minnesota’s newest sports complex, a 7,000-seat facility owned by the city of St. Paul.

    “We think it’s going to be the third largest solar array at a sports facility in the U.S,” project manager Paul Johnson said.

    That’s only about a tenth of the power needed to run the lights and meet the energy needs for the rest of the stadium. But it will be a high-profile alternative to conventional electric power. The baseball scoreboard is expected to tout the solar power generated along with the score. Its panels also will shade a group dining area.

    Other features will include a storm water filtration system that will take drainage from the nearby Metro Transit maintenance facility roof and use it to irrigate the turf at CHS Field. Rain water also will be diverted to flush 10 percent of the toilets in the restrooms.

    Making the stadium environmentally friendly came with a cost. The solar project added an additional $600,000 to the project, and the storm water system added an estimated $450,000. But grants are covering the extra cost.

    Still, the price tag on the solar project has drawn skepticism even from some environmentalists.

    Eric Jensen, senior energy associate for the Izaak Walton League of the Midwest, is encouraged that solar energy will receive such a high-profile installation and that more people will see a practical use for it. But he said the funding from Xcel Energy would have gone further on other projects.

    “This is the highest dollar per watt,” Jensen said. “It’s the most expensive dollar per watt project.”

    But Gerken, the project architect, thinks even seasonal use of environmentally-friendly facilities can inspire the public to think differently. He cites light rail service at Target Field.

    “Many people’s first experience with Metro Transit and the light rail was ‘hey, let’s go to a Twins Game,'” he said. “And now they’re used to it, they know about it. … It’s an option to go to the airport; it’s an option to go to the Mall of America.”

    Ann Hunt, environmental policy director for the city of St. Paul, said the innovative stadium features aren’t just demonstration projects but part of a larger effort across the city’s public sector. Another example of the city’s environmental focus, she said, is the solar hot water system for the RiverCentre convention center. Hunt said it’s one of the biggest in the Midwest.

    “This installation heats hot water to help heat the RiverCentre complex and the Xcel Energy complex and provide domestic hot water for that facility,” she said.

    Small town getting a good way off the carbon-based grid

    Geneseo, Illinois is a small town with fewer than 7,000 people. They plan to meet about half their electricity needs, on a good day (windy, sunny) with clean energy, after the installation of some new cool technology.

    From the Dispatch Argus:

    City officials have been notified of a $1 million grant for a one-megawatt solar energy array from the Illinois Clean Energy Foundation.

    Total cost of the project is expected to be $2 to $2.5 million. Under the project, renewable energy would provide about half the city’s daily nine-megawatt appetite for power — enough for about 220 homes — between the one-megawatt solar system and the three megawatts from the city’s two wind turbines on an ideal day.

    The council voted unanimously Tuesday to authorize Mayor Nadine Palmgren to sign an agreement with the foundation for the grant. Ald. Howard Beck, 3rd Ward, was absent.

    Council approval also will be needed for funding, seeking bids and awarding the project, according to electric superintendent Lewis Opsal.

    Geneseo’s solar array would be located on five acres now a soybean field at the foot of the city’s wind turbines, where it would connect to an existing substation.

    “It would be great for reducing our transmission costs,” said Mr. Opsal. “There is a long line of people very interested in that grant. It’s a perfect project for Geneseo.”

    Kathy Allen, of Geneseo, questioned if the project would lower power bills in the city. Mr. Opsal said, hopefully, the city would be able to hold costs steady. He noted a large utility recently raised rates 23 percent and U.S. power rates could double in the future because of the closure of high-emission plants.

    Build a solar power plant to help run a water treatment plant!

    RMU Announces Solar Plant Completion

    Rochelle Municipal Utilities, in Rochelle, Illinois, has. started operation of a large Photovoltaic Solar Plant providing power to their water treatment facility. This is a great example of a project that should be done in more places.

    In the Spring of 2014, RMU was awarded a $500,000 grant from the Illinois Clean Energy Community Foundation to fund construction of the Solar Plant. ICECF provides grants for up to $2/watt or 60% of the system and its installation costs, whichever is less. As a result of the competitive bidding process, Eagle Point Solar was awarded the project.

    “Rochelle’s 312 kW Solar Photovoltaic plant is one of the larger Public Power Utility owned plants in Illinois. This plant will provide renewable energy to the water treatment plant” stated Business & Financial Analyst Dan Westin. “Treatment plants require a lot of energy to make clean water. Rochelle will continue to explore financially sound projects in the area of renewable energy.”

    As a result of this project, Rochelle Municipal Utilities has been selected as a recipient of this year’s Northern Illinois Renewable Energy Summit & Expo’s “Leadership by Example” award.

    You can view the plant’s output real time here.

    The water treatment plant has a peak energy demand of about 420 kW and the PV system can cover over half of that. During summer months, when the Sun’s energy is maximally available, the sun will provide about 45% of the plant’s energy requirements. It helps that the plant operates mainly during daylight hours, so this is a good fit for a solar installation.

    According to Dan Westin, of Rochelle Municipal Utilities, “the unique part of Rochelle is that as a Muni owned utility it can include the grid capacity cost savings in the business case as well the solar energy credits marketed in the Pennsylvania market. The payback is less than five years that way. So 15 years of free solar energy. The cost of producing clean water goes down.”

    Dan also told me that there are similar projects in Galena and Rockford Illinois.

    Thinking Big About Clean Energy

    I want to put a solar panel on my roof so that I am releasing less greenhouse gas into the environment. But then I hear that manufacturing solar panels causes the release of greenhouse gasses, so I have to subtract that from the good I think I’m doing. But then I realize that the people who are making the solar panels have to change their method so they release less greenhouse gas into the environment.

    We hear this argument all the time (for example, here). You think you are doing something “green” but it really isn’t green because yadayadayada. I am suspicious of these arguments because they often (though not always) come from people who want us all to keep using fossil Carbon based fuels, for some (unsupportable) reason or another. One might think that these arguments have to be addressed in order to do a rational and well thought out analysis of the decisions you make.

    But that is simply not true for three reasons.

    Reason One: So what? Nobody tells me I have to make a rational decision about buying the 72 inch wide TV to replace my 64 inch wide TV, but suddenly I’m a bad person if I don’t do a detailed Carbon-based cost benefit analysis when I want to do something EVEN COOLER than having a bigger TV, like putting a freakin’ cool solar panel on my roof? Excuse me, but STFU with our rational argument yammering.

    Reason Two: You can’t count. If I put a solar panel on my roof, almost no one is going to discount the value of my house because it gets some free electricity, but a significant number of people are going to pay more for it when I sell it because it is cool. See reason one.

    So when I put these together, my personal cost benefit analysis leans towards doing it more than the nay sayers might say. But still, if putting up a solar panel kills more polar bears than not putting up a solar panel, because the manufacturers of solar panels use thousand of tons of coal per square inch of solar panel, I’ve got to consider not doing it. Except for reason three.

    Reason Three: If we all refuse to act until everyone else acts than we will not act. I will buy whatever solar panel I want, and the people who make solar panels can compete for my business by getting the energy to make their solar panels from … solar panels! Or not. Eventually they will because we ALL have to stop using ALL of the Carbon. Driving an electric car in a region where more coal is used to make electricity, would have to be MUCH less efficient than not driving the electric car (in terms of carbon release) to make me think twice about it. I’ll drive my electric car and at the same time we’ll watch the electricity companies make more and more of their electricity from wind and solar, and they will have a bigger market to sell that in because we are locally replacing gas with electricity. Of course, I will need the electric car to get cheaper before I can get one, but if I had one, that is what I would be thinking.

    I’ve had conversations about this issue with a lot of people and these conversations have made me realize that the structural argument against clean energy is wrong for the reasons stated above. It turns out that A. Siegel has had similar arguments and he has had similar thought. It is possible that he and I have even talked about this and are pretty much on the same page. Go read To solar carport or not to carport, that is the (or at least a) question … and see what you think!

    The naysayers want you to think small, but they make it look like thinking big. Instead of just calculating the immediate costs, consider also the distant polar bears crushed by the wheels of industry because you want a solar panel, they advise! But no, think even bigger. Think not only along dimensions of production and supply, but also, time and socioeconomic change. In order to address the climate crisis, we have to keep the Carbon in the ground. In order to keep the Carbon in the ground, everybody has to do everything they can do all the time, and not sit on their hands waiting for some other guy to change a value in our spreadsheet. Think big.

    I want my flying electric car! Forget the jet pack.

    If we, Western Civilization, had started out with electric cars, and a century later someone came along with the idea of exploding little dollops of gasoline mixed with air to propel them, that person would be thought insane.

    Depending on price, the cost of energy to propel an electric car a given distance can be about 5% of the cost to propel a gas-explosion style car. The electricity to power the electric car can be produced in any number of ways, some icky some cleaner, but much more efficiently. Some of that energy can be generated where the car is parked, at home or work, under a Photoage, a structure with photo cells that serves as a garage. Since most cars just sit there for much of the day, this can be a significant amount. Meanwhile, the car’s batteries can be part of the smart grid, the top 15% or so being used by the grid to store/use electricity keeping supply and demand closer.

    I used to think the inefficiency of making all the volts in big giant plants and sending it out over wires obviated all of this but experts tell me this is not true. Also, as the grid becomes more and more localized, and it becomes more and more normal to fit homes or other buildings with solar and use batteries, etc., the source becomes closer to supply. But really, it may be the difference between generating a magnetic field from available electric potential vs. causing a series of explosions inside a big heavy metal thing that matters most.

    (This brief comment was prompted by Don Prothero‘s post of the image at the top of the post on Facebook.)

    The Electric Car/Hybrid Car Lottery

    I would like to propose a lottery.

    Cost of ticket: $10.00

    Prize: The winner’s choice of an American-made electric car or hybrid car off of an approved list.

    The cars would be provided at discount from them manufacturer. The manufacturer benefits from the publicity (free-ish advertising) and from having more of their cars on the road in communities where they might otherwise be very rare.

    This would act like a Rotating Savings and Credit Association (ROSCA). A ROSCA is a way that a group of people can obtain a costly item with little available cash and low or zero interest loan. Every member of the ROSCA puts a set amount of money into the fund on a periodic basis, and one at a time each ROSCA member gets access to the entire pool, usually in random order.

    The lottery would be run as a government project attached to an existing agency that covers the cost of operation so that all of the money acquired through lottery ticket sales goes into the car purchase. The ticket purchasers benefit from the excitement of a lottery produced by the thrill of possibly winning, and occasionally, by actually winning a new car.

    The most expensive car out there that fits the criteria for inclusion on the approved list is probably a Tesla, but not everyone will want a Tesla; some people will want a much less expensive hybrid because the hybrid will not be tethered to charging between uses. So, each winner gets to chose the car they prefer, and if less expensive cars are chosen, then more individuals win on each drawing. It would be required that the winner keep possession of the car for one year or more in order for it to be free, which would discourage people from simply re-selling the car. However, if winners do manage to simply pass the car they’ve won on (in order to get the cash) the objective of the lottery is still met. There will be more cars of this type on the road either way.

    I suppose this could be done by a state or a collection of states, but also, why not by a commission set up by the Federal Government?