Tag Archives: El Nino

Spike in Greenhouse Gasses

Greenhouse gases go up and down in three ways.

First, there is the annual up and down cycle that happens because there is more land in the Northern Hemisphere. I won’t explain that to you now because I know you can figure out why that happens.

Second, there is natural variation up and down aside from that annual cycle that has to do with things like volcanoes and such. This includes the rate of forest fires, which increase greenhouse gases by turning some of the Carbon trapped in plant tissue into gas form as CO2. (That was a hint for the answer to the first reason!)

Third, humans.

There was a big spike in CO2 concentration this year, and it was caused by El Nino increasing forest fire output, which in turn, freed up some of that CO2. Also, regional drought in some places simply slowed down plant growth, leaving some Carbon stranded in the atmosphere.

So was that natural? Not at all. ENSO cycles, that cause El Nino and La Nina constitute and oscillation in rainfall patterns, and part of that results in extra forest fires or other effects as mentioned. But these effects are caused directly by weather disruption. Human caused global warming was already doing that. The severe El Nino of 2014-2016 was more severe (and probably longer) than any, or almost any, ever observed, precisely because it was a big dermatological monster sitting on top of a big hill made by anthropogenic global warming.

But there is also another,subtler but very important lesson in this event. At any given time we could have what would normally be a “natural” shift to bad conditions. But under global warming, such a shift can be transformed from a disaster to a much bigger disaster. In this way, think of climate change as the steepening of the drop off alongside the road from a 2 foot ditch to a 10 foot embankment. When we drive off the road due to natural forces (some ice, for example) without global warming,we get bounced around a bit. With global warming we get to rely on our airbags to save us, but the airbag deployment will probably break both our arms and mess up our face.

Anyway, the confirmation of the role of El Nino comes from new research discussed here.

El Nino Season Two?

It is like that stabby lady in the bath tub in that movie.

Here, I’ll give you a more readable version of the graphic from NOAA:

Screen Shot 2017-02-07 at 3.10.43 PM

The chance of an the Pacific ENSO system being neutral, meaning, not adding extra heat to the atmosphere and not removing extra heat form the atmosphere, is about 50% from now through mid 2017.

But, the chance of a la Nina is pretty darn low, and the chance of an El Nino, which would add more heat to the atmosphere than the average year, is not only approaching 40% but it has been growing.

A second El Nino this close on the last one, which was a very severe El Nino, will not be as strong because there is that much heat stored up in the Pacific. A lot of it came out last time. But there is a fair amount left in there, so we could have a real, if not major, El Nino event this summer or fall.

Or not. This is really up in the air, as it were. But it is a little unusual to see a second El Nino this close in time, so I thought you might find this interesting.

People finally concerned about climate change

Though not enough. And for the wrong reasons. But this is still good news.

Somewhere around 1990, but you could justify an earlier date if you like, science knew enough about global warming, the increase in the planet’s surface temperatures caused by human release of greenhouse gas pollution and other human effects, to have initiated meaningful action to shift our energy supply away from fossil fuels. We didn’t know exactly what would happen, but we knew stuff would happen. How long has it taken for this science to turn into effective policy to address global warming? We don’t know, because, while some things are happening now, not enough. We are not doing what we need to be doing decades after we should have started doing it.

The main reason we have avoided effective action is because of bought and paid for denial of the science supported mainly by the industries that stand to lose the most if we eliminated our reliance on fossil fuels. These industries could have done something very different. They could have started to develop and deploy clean energy solutions, and dissolve their fossil fuel based assets. But they didn’t. So we are in a bad situation right now.

Meanwhile this systematic and effective denial of science has kept public opinion confused, with many people failing to accept the reality of global warming. But now, we are seeing a major shift away from denial and towards accepting, if not fully understanding, the science, and getting on board with a shift in policy.

That is a good thing, though it is slightly annoying that a) recent lackluster opinion has resulted from the incorrect perception that an expectable slowdown in warming means global warming isn’t real (it doesn’t actually mean that) followed by b) an uptick in global warming’s effects caused by short term exacerbation from the current, now winding down, El Nino.

The last time there was a big uptick in US public concern about global warming was in association with the most recent major El Nino, and now, with this new major El Nino, concern has risen again, according to Gallup.

Hunter Cutting has a piece on Medium exploring this in more detail. He asks if the current uptick in concern is a tipping point in public opinion.

He notes,

For the past year there have been hints of a significant shift in the U.S. political landscape on the question of climate change. Now, new polling numbers just out from Gallup confirm not just a shift, but a seismic shift, in public opinion on the question. The shift is so dramatic that we may have passed a key tipping point in the politics of climate change.

But he further notes,

The political landscape must change still further before federal action can take the next big steps forward on climate change. Despite increasing agreement that climate change is a problem, most still don’t see the problem as a pressing concern calling for immediate action. But U.S. politics are notoriously non-linear. Political change often happens fast once the ball gets rolling.

If a Republican is elected to the White House, and both houses of Congress stay Republican, expect anywhere from a half decade to a decade of delay in acting meaningfully on clean energy policy. Yes, the markets are already heading that way, but don’t underestimate the ability of a nefarious petroleum fueled anti-change government to slow that down or even reverse it. This is why this November is the most important election in American, and global, history. Please don’t blow it.

El Nino Effects For This Spring in the US

The US NOAA has this video summarizing what they expect for weather in the US as the result of the current, winding down, El Nino:

2016 Spring Climate and Flood Outlook

As a near-record El Niño begins to wind down, NOAA issued its spring seasonal outlooks for flooding, drought, precipitation, and temperature. Flood risk is highest in the lower Mississippi valley and along the Southeast coast. Learn more at: http://go.usa.gov/c7xYx

Posted by NOAA Climate.Gov on Thursday, March 17, 2016

Current Status of California Drought, and other matters: Interview with Peter Gleick

The latest episode of Ikonokast, the science podcast Mike Haubrich and I do, is now up. This is an interview with Pacific Institute’s Peter Gleick. We talk about the California drought (past, present, and future), Syria, virtual water, El Nino and climate science denialism.

You can hear the podcast here: WHAT ABOUT WATER? DR. PETER GLEICK OF THE PACIFIC INSTITUTE.

Global Warming Over The Next Decade: Candidates take note. UPDATED

The Time Scales of Political and Climate Change Matter

The US is engaged in the laborious process of electing a new leader, who will likely be President for 8 years. Climate change has finally become an issue in US electoral politics. The climate policies of the next US President, and the Congress, will have a direct impact on the climate, because those policies will affect how much fossil carbon is put into the atmosphere over coming decades. So it is vital to consider what the climate may do during the next administration and the longer period that will include that administration’s effective legacy period, more or less the next decade starting now.

There is evidence that the ongoing warming of the planet’s surface is likely accelerate in the near future. Recent decades have seen the Earth’s surface temperatures go up at a relatively slower than average rate compared to earlier decades. The best available science suggests that this rate is about to increase. We can expect a series of mostly record breaking months and years that will add up to an alarmingly warm planet.

(The graphic showing continued global warming through 2015 at the top of the post is from here.)

The Rate Of Global Warming Is About To Increase

I wrote about this last February, in discussing a paper by Steinmann, Mann, and Miller, that said:

The recent slowdown in global warming has brought into question the reliability of climate model projections of future temperature change and has led to a vigorous debate over whether this slowdown is the result of naturally occurring, internal variability or forcing external to Earth’s climate system. … we applied a semi-empirical approach that combines climate observations and model simulations to estimate Atlantic- and Pacific-based internal multidecadal variability (termed “AMO” and “PMO,” respectively). Using this method [we show that] competition between a modest positive peak in the AMO and a substantially negative-trending PMO … produce a slowdown or “false pause” in warming of the past decade.

That research was also discussed by Chris Mooney and John Upton. John Upton updated this discussion earlier this week, noting,

Cyclical changes in the Pacific Ocean have thrown earth’s surface into what may be an unprecedented warming spurt, following a global warming slowdown that lasted about 15 years.

While El Niño is being blamed for an outbreak of floods, storms and unseasonable temperatures across the planet, a much slower-moving cycle of the Pacific Ocean has also been playing a role in record-breaking warmth. The recent effects of both ocean cycles are being amplified by climate change.

Why Does The Rate of Global Warming Vary?

This is pretty complicated, and even those who are on the cutting edge of this research are cautious in making links between their models and the on the ground reality of warming in the near future. The long term rise in surface temperature, which is what we usually refer to when using the term “Global Warming,” is not steady and smooth, but instead, it is rather squiggly. But the ups and downs that accompany the general upward trend are mostly caused by things that are known.

The sun provides the energy to warm the Earth’s surface, and this contribution changes over time, but the sun varies very little in its output, and thus has less influence than other factors. The sun’s energy warms the Earth mainly because our atmosphere contains some greenhouse gasses. The more greenhouse gas the more surface warmth. As humans add greenhouse gas (mainly CO2 released by burning fossil fuel) the surface temperature eventually rises to a higher equilibrium. But the variation in the sun’s strength is hardly observable.

Aerosols, also known as dust or in some cases pollution (or airborne particles) can reduce the surface temperature by intercepting some of the Sun’s energy on its way to the surface (I oversimplify). These aerosols come mainly from industrial pollution and volcanoes. The addition of a large amount of aerosol into the atmosphere by a major volcanic eruption can have a relative cooling effect but one that lasts for a short duration, because the dust eventually settles.

Screen Shot 2016-01-07 at 11.09.08 AM

There are many other important factors. Changes in land use patterns that cause changes in effectiveness of carbon sinks – places where atmospheric carbon (mainly CO2) is trapped in solid form by biological systems – increase atmospheric CO2. Melting glacial ice takes up heat and influences surface temperatures. And so on.

The biggest single factor that imposes a squiggle on the upward trending line of surface temperature is the interaction between the atmosphere and the ocean. Close to 100% of the extra heat added to the Earth’s system by global warming ends up in the world’s oceans. The heat is moved into the ocean because the surface warms up (from the sun) but surface water is constantly being mixed into lower levels of the ocean, and visa versa. When it comes to the Earth’s surface temperature, the ocean is the dog and the surface is the tail.

A famous, and now perhaps infamous, example of this interaction between ocean and air is the El Niño Southern Oscillation (ENSO). Here’s the simple version (see here for more detail). The equatorial Pacific’s surface is constantly being warmed by the sun. The surface waters are usually blown towards the west by trade winds. (Those trade winds are caused in part by the rotation of the Earth, and in part by the ongoing redistribution of excess tropical heat towards the poles). This causes warm water to move west, where it is potentially subducted into the ocean, moving heat into the sea. That heat eventually may work its way out of the ocean through various currents.

During many years, the ins and the outs are similar. During some years, La Niña years, the amount of heat moving into the ocean is larger, which can cause a small cooling influence on the planet. Every now and then, the reverse happens. This involves complicated changes in trade winds and ocean currents. A good chunk of the heat that has been stored in the Pacific now emerges and is added very abruptly, over a period of several months, to the atmosphere. This is an El Niño event. We are at this moment experiencing one of the strongest El Niño events ever recorded, possibly the strongest (we won’t know until it has been going a while longer.)

ENSO is one, in fact the biggest, example of atmosphere-ocean interaction that influences surface temperatures. But, ENSO is only one part of the interaction between the Pacific and the atmosphere. There is also a phenomenon known as the Pacific Multidecadal Oscillation (PMO). For its part, the Atlantic has the AMO, a similar system. These phenomena are characterized by a general transfer of heat either into or out of the ocean, with several years in a row seeing more heat move into the ocean, followed by several years in a row of more heat moving out of the ocean.

Though ENSO and the PMO are distinct processes, they may be related. I asked climate scientist Michael Mann if he views El Nino as part of the larger scale system of PMO, or if El Niño essentially rides on top of, or acts independently from PMO. He told me, “I would say the latter. At some level, the PMO really describes the long-term changes in the frequency and magnitude of El Niño and La Niña events, i.e. change in the behavior of ENSO on multidecadal timescales, and it will appear as multidecadal oscillation with an ENSO-like signature with some modifications due to the fact that certain processes, like gyre-advection and subduction of water masses, act on longer timescales and do they are seen with the PMO bot not El Niño or La Niña.”

The influence of ENSO on global surface temperatures is well illustrated in this graphic from Skeptical Science.

ENSO_Temps_500

Here, the surface temperature anomaly is shown from the late 1960s to the present. The annual values are classified into years during which ENSO was neutral, or neutral with volcanic influences, La Nina years, and El Niño years with or without volcanoes. A separate trend line is shown for years that should be relatively warm (El Niño), relatively cool (La Niña), and years that should be about average.

The influence of the PMO is also apparent.

Screen Shot 2016-01-07 at 12.18.44 PM

This graphic shows the measurement of the Pacific Decadal Oscillation and the surface temperature anomalies. The data are averaged out over a two year cycle (otherwise the PDO would be way too squiggly to be useful visually). Notice that during periods when the PDO is positive (adding heat to the atmosphere) there tends to be a stronger upward trend of surface temperature, and when the PDO is negative, the surface temperature rises more slowly. Remember, a lot of other factors, such as aerosols, are influencing the temperature line, so this relationship is quite imperfect.

Also notice that both lines trend dramatically upward near the end of the graph. This reflects the last couple of years (including right now) of dramatically increasing surface temperatures, and an apparent positive shift in the PDO. Just as interesting is the negative PDO associated with a reduced upward trend in the surface temperatures, fondly known by many as the “Hiatus” or “Pause” in global warming, during the first part of the 20th century. Indeed, it is likely that this slowdown (not really a pause) in warming is largely a result of a higher rate of excess heat being plowed into the oceans, and less coming back out. This is also a period during which the ENSO system produced no strong El Niños.

But the PDO is, as noted, part of a larger phenomenon of ocean-atmosphere interaction. The study noted above by Steinman, Mann, and Miller takes a broad view of these oscillations and their impact on climate. In RealClimate, Mann writes,

We focused on the Northern Hemisphere and the role played by two climate oscillations known as the Atlantic Multidecadal Oscillation or “AMO” … and the … Pacific Multidecadal Oscillation or “PMO”… The oscillation in Northern Hemisphere average temperatures (which we term the Northern Hemisphere Multidecadal Oscillation or “NMO”) is found to result from a combination of the AMO and PMO.

…Our conclusion that natural cooling in the Pacific is a principal contributor to the recent slowdown in large-scale warming is consistent with some other recent studies…

…the state-of-the-art climate model simulations analyzed in our current study suggest that this phenomenon is a manifestation of purely random, internal oscillations in the climate system.

This finding has potential ramifications for the climate changes we will see in the decades ahead. As we note in the last line of our article,

Given the pattern of past historical variation, this trend will likely reverse with internal variability, instead adding to anthropogenic warming in the coming decades.

That is perhaps the most worrying implication of our study, for it implies that the “false pause” may simply have been a cause for false complacency, when it comes to averting dangerous climate change.

What Will Global Warming Do During The Next Decade?

Have political leaders and representatives been lukewarm on climate change over recent years in part because the climate change itself has been less dramatic than it could be? And, conversely, is it the case that the next couple of decades will see a reverse in both? I asked Michael Mann if his research indicated that the indicators such as the PMO, AMO, or the derived NMO, show that the oceans are about to contribute to a speedup in warming. He told me, “…both PMO and AMO contribute to NMO, but in recent decades PMO has been the dominant player, and yes, I would expect to see the recent turn toward El Nino-like conditions and enhanced hemispheric/global warming as an apparent upturn in the NMO, though it is always difficult if not impossible to diagnose true change in the low-frequency signal right at the end of a time series.”

Let’s have a closer look at the influence of the PDO on global surface temperatures. Since the human influence on the atmosphere has grown over time, we want to focus on more recent decades when the input of additional greenhouse gases had already risen to a high level. This graphic shows the NASA GISS surface temperature anomaly values (the dots) from 1980 to the present, but with some trend lines added in.

Screen Shot 2016-01-08 at 10.19.19 AM

(The NOAA GISS data are a running 12 month mean using the monthly data. Note that the trend lines added to this graph are meant to visually underscore the differences between time periods in the overall trend, and have no special statistical value.)

The black dots and the curvy trend line to the left represent a period of time when the PDO was positive, but also includes a depression in surface temperature because of the eruption of Mount Pinatubo. I made the trend line a “second order polynomial” instead of a regular straight line. A polynomial equation can capture internal curviness of a series of data.

(A polynomial equation that is of the same “order” as the number of points in the data set would, theoretically, zig and zag back and forth to account for each data point’s position which would be absurd. One must be careful with poylnomials. But a second order polynomial can honestly reflect a modest curviness in a series of data, and in this case, helps the line do its job at visually presenting a short term pattern.)

The second series of data, in blue, shows a period of mostly negative PMO, again, with a second order polynomial line drawn on it. This is the period of time that includes the so-called “hiatus” in global warming, when the upward trend of increasing surface temperature was somewhat attenuated. That attenuation was probably caused by a number of factors, and in fact, at least one of those factors had to do with inadequacies of the data itself, in that the measurements fail to account for extreme warming in the Arctic and parts of Africa. But the negative PMO, and likely, according to Steinmann, Mann and Miller, a larger scale relationship between atmosphere and ocean, seem to have somewhat flattened out the line.

But then we come to the third part of the data, in red. The ocean-atmosphere relationship has switched the other way. The PMO has been positive since the last part of 2013, and over a smaller and more recent time frame, we have been experiencing a strong El Niño.

This graphic does a nice job showing how short and medium term upward and downward trends eventually cancel out to produce a single upward trend in global surface temperature. Very short term shifts such as a given El Niño event or a given Volcanic eruption cause the most obvious squiggles. Somewhat longer term, multi-decade trends such as the PDO cause longer parts of the series of measurements to rise more or less quickly. But over nearly 40 years shown here, and longer periods, all the ups and downs average out to a single trend that can be reliably projected for a reasonable period of time.

Will More Rapid Global Warming Spur A More Effective Policy Response?

These ups and downs in the rate of warming are not important to the long term trend, but they are important because of their immediate effects on weather. And that is all that should matter. But these short and medium term trends, as well as even more immediate events such as individual storms, take on a greater importance that has nothing to do with the science of climate change itself. These changes affect the way politicians, advocates, and the general public, regard climate change, and serve to motivate or attenuate action on one side of the false debate or another.

We have known enough about climate change and its causes to have started the shift from fossil fuels to alternative strategies for producing energy long before 1980, but have in fact done very little to solve this problem. Initially, climate change seemed more like a thing of the future, and in fact, had relatively little impact on the most influential and powerful nations and people. Disruptions of weather patterns started to become more apparent around or just before 1980, but for the next few decades anti-science forces were well organized, and their efforts were enhanced, at the beginning of the 21st century, by the unthinking and unknowing process of air-sea interactions that reduced the rate of surface temperature increase even while weather patterns continued to become more and more chaotic.

But the truth is, a widespread flood in the American bottomlands defeats a snowball in the hands of a contrarian Senator. Eventually, more and more people in the US have been affected by inclement weather, and the frequency with which destructive storms of various kinds hammer the same subpopulation again and again has gone up. The symbolic snowball melts under the cold hard stare of voters who wonder how they are going to rebuild their lives after floods, severe storms, and droughts have taken away their property, in some cases their loved ones, and raised their insurance rates.

So the question emerges, will the next decade or so be a period of increased, or of attenuated, motivation from Mother Nature to act on climate change? The rational actor will act now, because we know that the greenhouse gas we pump into the atmosphere today changes the climate for decades to come. The reactionary actor with little capability or interest in thinking long term (i.e. most people) will be mollified by a decade with few severe storms, not much flooding, a seemingly secure food supply, and a snowball or two.

I left the projection of the future as a single estimate based on the past several decades (all the data shown on the graph). I could have imposed a more upward trending line, maybe a nice curve like these polynomials show, as an extension to the blue line. But since the graphic is going out a couple more decades, and the ups and downs average out over several decades, I think it is fair enough to use the linear projection shown by the red dotted line.

I’m not actually making a prediction of future global surface temperatures here. What I’m showing instead is that two things seem to be true. First, long term (over decades) global warming has happened and will likely to continue at about the same pace for a while. This has been going on long enough that by now we should viscerally understand that the squiggles are misleading. Second, the last couple of decades have been a period of reduced warming, but that period is likely over, and we are likely to experience an increased rate of warming.

Will surface temperatures during the term of the next POTUS squiggle about mostly above that red dotted line on this graph, or will those temperatures squiggle up and down above and below the line, or even below it? Based on the best available science, that first choice is most likely. Whomever ends up being POTUS, and the corresponding Congress, will be enacting (or failing to enact) policy during a period of surface temperature increasing at a rate higher than we have in recent years.

A vitally important known unknown, is what will the effects of such a rise in surface temperature be. We have various levels of confidence that storminess, changes in the distribution of rainfall, drought, and through the melting of glacial ice, sea level rise, are all important forms of climate disruption we are currently experiencing, and we should expect more of the same. The unknown is whether or not we should expect a dramatic acceleration of these changes in the short term future.

How will the insurance industry address an increase in widespread catastrophic damage caused by storms and floods? Will the government have to underwrite future losses, or will disaster insurance simply become something we can’t have? Will there be damage to our food production system that ultimately results in less certainly in the food supply, and how will we deal with that? The well known “reugee crisis” is a climate refugee crisis. But it may be a small one compared to what could happen in the future. Will we need to restrict development in mountain areas more subject to fires, and withdraw settlement from low lying areas along major rivers? How will we address more widespread and more severe killer heat waves?

The battle to preserve the use of fossil fuels exists at the state level in the US. Should we have a national effort to stop the legislatures in red states from putting the kibosh on local development of clean energy sources, either by energy utilities or individual home owners?

Sea level rise has already had several negative effects, but it is also is a longer term issue, and is perhaps among the most serious consequences of human greenhouse gas pollution. At some point, American politicians in some areas will be faced not with the question, “Will this or that Congressional district be represented by a Democrat or a Republican,” but rather, “Where the people who lived in this district go now that the sea is taking it?”

Over time, I think the social and political will to address climate change has grown, though very slowly. It might seem that the effects of climate change right now are fairly severe, with floods and fires and all that being more common. But while these effects are real and important, they have been minor compared to what the future is likely to bring. The anemic but positive growth of willingness to act has occurred in a political and physical climate that is less than nurturing of dramatic and effective action.

Whoever is elected president this time around, and the Congress, will serve during a period when the people’s will to act will transform from that inspired by activists pushing for change, to outcries of a larger number of desperate and suffering newcomers to the rational side of the climate change discussion.

Expect a sea change in the politics of science policy.

Added: See this recent post by Peter Sinclair, and his video:

How warm was 2015, how warm will 2016 be?

The year that just finished, 2015, was the warmest year recorded in the instrumental record. The actual data for December is not officially available yet, but my friend and colleague John Abraham keeps track of the global surface temperature daily and has done an amazing job at estimating the final temperature anomaly value that is eventually reported in each of several databases. He has provided a graph using his estimated value, above.

There are two major contributing factors, maybe three depending on how you count everything, to 2015 being the warmest year. The main factor is, of course, global warming. The Earth’s surface temperature is going up because of the Greenhouse Effect, and along with that, we are seeing remarkable climate disruption, including floods, other inclement weather, and a host of problems. On top of this, the last part of 2015 saw a strong El Niño, the strongest recorded in historic documents. This weather event, which involves the departure of ocean-stored heat in the Pacific into the atmosphere, is continuing, though it will likely peak soon and begin to decline (but see below). That is all we need, really, to explain 2015, but there may be a third factor that overlaps with those two worth singling out. Some areas of the world’s oceans, including parts of the Atlantic and the Pacific (outside the usual Pacific El Niño warming effect), have been exceptionally warm on the surface. This is really just part of the whole anthropogenic global warming thing, but seems more extreme this year. In other words, it seems as though the ocean is putting more stored heat into the atmosphere than just that part that El Niño contributes, and the surface temperature measurements include sea surface temperature.

How warm will 2016 be? Playing the odds, it would always be a good bet that the next year will be warmer than the current year, on average, because global warming continues. However, even as the surface temperature trends upwards over time, the actual measurements from year to year wiggle up and down a fair amount owing to a number of factors. So, on average, if you bet on warming for each subsequent year you would overall win, but you might lose that bet during some years. (In fact, you could lose your shirt if warming happens to occur with infrequent large spikes interspersed among years that see modest cooling, so be careful!)

However, 2016 is actually more than 50-something percent likely to be warm compared to 2015. One reason is that El Nino will continue for the first part of 2016, and the effect that El Niño has on surface temperature is delayed. The peak effect occurs several months after the peak of the El Niño itself. So, if El Niño peaks in February, for example, we will have global warming + El Niño enhancement through early summer. So at least half of the months of 2016 will be very warm. There is a very good chance, then, that 2016 will be warmer even than 2015.

Mark Boslough, a physicist who writes quite a bit about Global Warming, has made a bet along these lines. He is not betting that 2016 will be warmer than 2015, but he is betting on the long term upward trend of the Earth’s surface temperatures. He’s really putting his money where his mouth is, by the way, to the tune of 25,000 US dollars. The details of his bet are here. So far, as far as I know, none of those in the climate science denial world have taken him up.

Global Warming In November

The NASA GISS global temperature anomaly for November has been published.

October’s value was originally reported as 104, but has been corrected (it is normal to have small corrections on an ongoing basis) to 106. November’s value, just out, is 105.

This is hundreds of a degree C anomaly, the standard number used to report, off of a baseline. The baseline in the case of NASA GISS is 1951-1980, which does not represent pre-industrial levels.

The huge uptick we saw during the last part of the current year is the result of global warming, which has been pushing temperatures up, and the current El Nino, which probably started to affect these measurements in late September. Over the next few months or so, El Nino proper will start to decline, but the surface temperatures will remain elevated by El Nino (there is a lag). After that, we should see monthly temperature readings being to drop, but the overall trend is likely to continue.

The graphic at the top of the page is the 12 month moving average from the NASA GISS data base, up through November. Notice that since the 1960s there has been a very steady upward trend, with some variation. Most of the big upward spikes you see are El Nino years, and the lower troughs are typically periods with one or more La Nina events. These variations reflect the interaction between surface (air and sea surface) and the ocean, mainly the Pacific.

2015 is currently the warmest year on record, and 2014 is the second warmest year. It is virtually impossible for 2015 to drop below warmest once December values are added in. Likely, the spread between warmest and second warmest year will increase.

November 2015 is the second warmest month-by-anomaly (not actual temperature, but relative to other instances of the same month) and November 2015 is the second warmest. All the other warmest months in the top 10 are from the 90s or 80s, found during El Nino years.

As the effects of the current El Nino peak and decline, we will see the “warmest month” thing fade away until the next El Nino, but the 12 month moving average will continue to rise for quite some time, then level off, then likely decline somewhat. But overall, the trend is expected to be on average upward because, ladies and gentlemen, anthropogenic global warming is real and is happening now.

Yet Another Record Breaking Hurricane: Sandra

Sandra is a Category 4 hurricane in the Eastern Pacific. The storm will hit Mexico.

Sandra breaks several records. It is the first observed Category 4 hurricane on Thanksgiving Day. It is the latest major Western Hemisphere hurricane observed. It is the latest Category 4 storm in either the eastern Pacific of Atlantic basins. Most likely, Sandra will become the latest landfalling tropical cyclone on record for Mexico.

(Jeff Masters has details.)

Sandra will come near the southern time of the Baja late Friday, but will likely be a tropical storm at that point. The storm will come ashore overnight or Saturday morning as a tropical depression (or maybe a weak tropical storm) in Sinaloa. So, this may be a case of the rare Eastern Pacific hurricane reaching land, but as a rainstorm rather than a threatening tropical storm.

This year’s record tropical storm activity is rather astonishing and is a result of a combination of continued global surface warming (which is thought to contribute to an overall increase in the frequency and severity of major storms) and this year’s very strong El Niño.