Tag Archives: Energy Transition

Books On The Energy Transition

Be informed, have a look.

Drawdown: The Most Comprehensive Plan Ever Proposed to Reverse Global Warming edited by Paul Hawken.

This is a great resource for understanding the diverse strategies available to decarbonize. There is a flaw, and I think it is a fairly significant one. Drawdown ranks the different strategies, so you can see what (seemingly) should be done first. But the ranking is highly susceptible to how the data are organized. For example, on shore vs. off shore wind, if combined, would probably rise to the top of the heap, but separately, are merely in the top several. Also, these things change quickly over time in part because we do some of these things, inevitably moving them lower in ranking. So don’t take the ranking too seriously.

Free Market Environmentalism for the Next Generation by Terry Anderson and Donald Leal.

I mention this book because I hope it can help the free market doe what it never actually does. The energy business is not, never was, and can’t really be a free market, so expecting market forces to do much useful is roughly the same as expecting the actual second coming of the messiah. Won’t happen. This book is not an ode to those market forces, though, but rather, a third stab (I think), and a thoughtful one, at a complex problem.

Related, of interest: Windfall: The Booming Business of Global Warming by McKenzie Funk. “Funk visits the front lines of the melt, the drought, and the deluge to make a human accounting of the booming business of global warming. By letting climate change continue unchecked, we are choosing to adapt to a warming world. Containing the resulting surge will be big business; some will benefit, but much of the planet will suffer. McKenzie Funk has investigated both sides, and what he has found will shock us all. ”

Designing Climate Solutions: A Policy Guide for Low-Carbon Energy by Hal Harvey, Rovbbie Orvis and Jeffrey Rissman. ” A small set of energy policies, designed and implemented well, can put us on the path to a low carbon future. Energy systems are large and complex, so energy policy must be focused and cost-effective. One-size-fits-all approaches simply won’t get the job done. Policymakers need a clear, comprehensive resource that outlines the energy policies that will have the biggest impact on our climate future, and describes how to design these policies well.”

CO2 from Coal in the US: Good News

Carbon dioxide emissions from US power generation have declined by over a quarter since 2005, according to a recent report from the US government. The largest part of this reduction is from reduced demand, with switching around among fossil fuels that are less vs more dirty and adding non carbon sources combine to make about the same difference. Like this:

From the US Department of Energy

The following graph shows the total generation and the total CO2 output of the US electricity generation system, comparing 2007 and 2017. Solar and wind don’t show up in 2005, but are a nice little chuck in 2017 (progress but too slow). Combined, non-carbon (still with nuclear as the largest part) went from 28% to 38% at the expense of fossil fuels. Within fossil fuel, there was a husge shift from coal towards natural gas. What we need to do now is to stop switching to methane, and start switching only to wind and solar. Right now.

From the US Department of Energy

Source

Decarbonizing the not so low hanging fruit

We, we humans, need to stop releasing fossil carbon into the atmosphere well before 2100 or we are doomed.

The main reason we are not heading headlong into that project, getting it done right away, is because of the fossil fuel industry combined with a deep seated self-hate on the part of Republicans, who would rather end civilization and make all of our children suffer than to do something an environmentalist might suggest.

The road to decarbonization is the same as the road to electrification plus the road to making all of our electricity with something other than coal, oil, methane, and the like. This could involve a certain amount of liquid fuel that is generated using wind and solar power, and magical bacteria or something, perhaps with a mix of plant material or other bio-sources.

There are easy ways to do part of this fast. For example, building wind farms is easy and produces piles of electricity. Same with solar. “But wait wait,” you say. “Those sources are intermittent, we can’t…” But I say to you, if this is your first thought, you are out of date (or are a Republican?). Solar and wind are indeed intermittent, but we can still use them as the backbone of our power system. This is a problem, but not one that can’t be figured out and has been, in fact, largely solved using a number of approaches. And, that is off the topic of this post.

We can also put solar panels on our roofs to a much greater degree than we do now. It has been estimated that a reasonable, not overdone but pretty thorough, deployment of PV panels on the roofs of America would cover about 40% of our in-building electrical needs as they stand now. This added to the eventual (though expensive, yet easy) deployment of heat pumps and total electrification of everything in those buildings probably averages out (the heat pumps reduce energy demand, the electrification increases demand for electricity as compared to gas or oil).

There are other types of low hanging fruit as well, such as increasing efficiency, telecommuting.

But what about the hard to do stuff, the major uses of energy that can’t be changes so easily?

There is a new review paper out in Science that discusses this. The paper is:

Net-zero emissions energy systems, boy Steven Davis, Nathan Lewis, Matthew Shaner, et al. Science 360(6396).

If you click on that link, you might be able to see the paper, as I think it is OpenAccess.

The paper identifies the following areas as tough nuts to crack:

  • Aviation
  • Long-distance transport
  • Shipping
  • Steel production
  • Cement production

It identifies the following technologies as helpful:

  • Hydrogen and ammonia fuels
  • Biofuels
  • Synthetic hydrocarbons
  • Direct solar fuels

The paper also identifies “highly reliable electricity” and energy storage as key areas of further development.

I do not see any major surprises in this paper, but that is because it is a review paper. I think it is a useful read to help organize one’s thinking on the transitions we will attempt, should the Republicans allow it, over the next decades.

Are electric cars worth it?

My friend, and expert on electric cars, Phillip Adams, made a proposal at a public political meeting that we should make the transition to electric vehicles. He had a solid argument, and there were several different lines of reasoning leading to that conclusion.

A person speaking in opposition, with good intention, noted that we do burn coal to make electricity, and therefore, while we all want to eventually see all the cars be electric, don’t jump on that bandwagon too fast, buddy boy…

Phil was right, the arguer-againster-guy was wrong.

There are three main reasons for this. Continue reading Are electric cars worth it?

States Can Lead the Way on Climate Change

True that. In the US, energy policy and regulation happens much more at the state level than the federal level, and our federal government went belly up last January anyway. Some states will not lead, they will go backwards, but others will lead, and show the way.

So, here I want to highlight this new item in Scientific American by Rebecca Otto.

States Can Lead the Way on Climate Change
The Trump administration’s threats to abandon Obama’s Clean Power Plan and exit the Paris accords don’t necessarily mean all is lost

The word “corporation” does not appear in our Constitution or Bill of Rights. But as Rhode Island Sen. Sheldon Whitehouse notes in his book Captured, corporations had already grown so powerful by 1816 that Thomas Jefferson urged Americans to “crush in its birth the aristocracy of our moneyed corporations, which dare already to challenge our government to a trial of strength, and bid defiance to the laws of our country.”
Today the conflict between the unfettered greed of unregulated capitalism and the right of the people to regulate industry with self-governance has reached extreme proportions. Corporations now have more power than many nations and feel justified in manipulating democracy to improve their bottom lines instead of the common good.
Nowhere is this problem more pronounced than…

Then where? THEN WHERE??? Go read the original piece!

Rebecca Otto’s Clean Energy Plan for Minnesota

Earlier today, Minnesota Gubernatorial candidate Rebecca Otto released her energy transition plan. It an ambitious plan that puts together several elements widely considered necessary to make any such plan work, then puts them on steroids to make it work faster. To my knowledge, this is the first major plan to be proposed since the recent dual revelations that a) the world is going to have to act faster than we had previously assumed* and b) the US Federal government will not be helping.

Here’s the elevator speech version: Minnesota residents get around five thousand dollars cash (over several years), monetary incentives to upgrade all their energy using devices from furnaces to cars, some 80,000 new, high paying jobs, and in the end, the state is essentially fossil fuel free.

About half of that fossil fuel free goal comes directly from Continue reading Rebecca Otto’s Clean Energy Plan for Minnesota

The Energy Transition and the Question of Perfection

I just read an interesting piece on the widely influential VOX, by David Roberts, called “A beginner’s guide to the debate over 100% renewable energy.” It is worth a read, but I have some problems with it, and felt compelled to rant. No offense intended to David Roberts, but I run into certain malconstructed arguments so often that I feel compelled to promote a more careful thinking out of them, or at least, how they are presented. Roberts’ argument is not malconstructed, but the assumptions leading up to his key points include falsehoods.

I’m not going to explicitly disagree with the various elements of the solutions part of this article (the last parts). But the run-up to that discussion, in my opinion, reifies and supports a number of falsehoods, mainly the dramatic (and untrue) dichotomy between the perfect and wonderful large-plant mostly coal and petroleum sources of energy on one hand with alternatives fraught with All The Problems on the other. Since this VOX piece is a “beginner’s guide” I would hope we can stick a little more nuance into beginner’s thinking.

I choose to Fisk. Thusly:

“Doing that — using electricity to get around, heat our buildings, and run our factories — will increase demand for power. “

It decreases the demand for power, overall. Internal combustion engines are inefficient compared to electric, to such a degree that burning huge amounts of petroleum or coal in one place to ultimately power electric vehicles in a reasonable size region is more efficient than distributing burnable material to all those vehicles to run them. Electrification is inherently more efficient and lower maintenance.

“That means the electricity grid will have to get bigger,”

Our grid, in the US and generally, in the west, is fully embiggened. Globally, maybe. That depends on if a “big grid” is the best way to deliver power everywhere. It probably isn’t.

[The grid must become] “more sophisticated, more efficient, and more reliable — while it is decarbonizing. ”

This contrasts the improvement of the grid with decarbonizing as though they were opposites, but for most of the expected improvements of the grid, improvements of the grid and decarbonizing are the same actions. They are not in opposition to each other.

“On the other side are those who say that the primary goal should be zero carbon, not 100 percent renewables. They say that, in addition to wind, solar, and the rest of the technologies beloved by climate hawks, we’re also going to need a substantial amount of nuclear power and fossil fuel power with CCS.”

This is a false dichotomy in my opinion. There is uncertainty here, of course. But let’s try this. Let’s try decarbonizing 50% of our current power without nuclear. At that point we will know whether or not to invest trillions into an unpopular solution (and nuclear is unpopular). If we need to, we’ll do it. If we don’t, we won’t. Maybe something in between. But worrying about this now, and using uncertainty to argue one way or another, is a waste of conversational energy.

“(If you shrug and say, “it’s too early to know,” you’re correct, but you’re no fun to dispute with.)”

LOL. But no. Rather, I’m thinking that it is too early to know and, in contrast, you are hiding a pro-nuclear argument in a blanket of uncertainty! Maybe you are not, but this is what such arguments almost always look like. Beware the nuclear argument wearing sheep’s clothing. A greenish tinged sheep, yes, but still a sheep.

“The sun is not always shining; the wind is not always blowing.”

Another falsehood. Technically the sun is not always shining on us, true, but as sure as the Earth is spinning, the wind is always blowing. People who say this have never been to the Dakotas.

It does vary in intensity and by region. So does nuclear, by the way. Nuclear plants have to be shut down or slowed down regularly for refueling. When severe storms threaten, nuclear plants are often shut down, and that is not on a schedule. When any big power plant suffers a catastrophe there is a long term and catastrophic break in the grid, as compared to a cloudy day, or even, a broken windmill.

The sun is up during the day, and in may places and for many times, generally everywhere, the demand for power is greater during the day.

Overall, this is a falsehood because it attributes perfection to the traditional sources, especially to Nuclear, and great imperfection to the non-Carbon and non-Nuclear alternatives. That distinction is not nearly as clear and complete as generally stated.

“The fact that they are variable means that they are not dispatchable — the folks operating the power grid cannot turn them on and off as needed.”

Another falsehood. First, you can’t turn a major traditional power plant on or off as needed. Indeed, there are already major storage technologies and variation methodologies at work. There are high demand industries that are asked to increase or decrease their use, on the fly, to meet production variation on large grids. There are pumped storage systems. Etc. The fact is that there is variation and unpredictability in the current big-plant system, it is a problem, and it is a problem that has been quietly addressed. Quietly to the extent that people making comparisons between traditional big-plant electricity and clean energy systems often don’t even know about it.

“As VRE capacity increases, grid operators increasingly have to deal with large spikes in power (say, on a sunny, windy day), sometimes well above 100 percent of demand. “

Yes indeed, and this is the challenge being addressed as we speak. Enlarging grid balancing systems, increasing storage, developing tunable high energy industries, and so on. This is the challenge, it is being met as we speak.

“They also have to deal with large dips in VRE. It happens every day when the sun sets, but variations in VRE supply can also take place over weekly, monthly, seasonal, and even decadal time frames.”

Yes indeed, and this is the challenge being addressed as we speak. Enlarging grid balancing systems, increasing storage, developing tunable high energy industries, and so on. This is the challenge, it is being met as we speak.

“And finally, grid operators have to deal with rapid ramps, i.e., VRE going from producing almost no energy to producing a ton, or vice versa, over a short period of time. That requires rapid, flexible short-term resources that can ramp up or down in response.”

Yes indeed, and this is the challenge being addressed as we speak. Enlarging grid balancing systems, increasing storage, developing tunable high energy industries, and so on. This is the challenge, it is being met as we speak.

The article mentions the economic problems. I don’t see those as difficult to solve but they are important, but I’ve got no comments on that at the moment. Read the article.

“The last 10 to 20 percent of decarbonization is the hardest”

Absolutely. And, know what? The first 25% will be the easiest. Do that now, and we’ll know a LOT more about the next 25% and maybe it won’t seem so hard after all. Maybe a major technological solution will come along before we get to that last 10%, maybe society will change enough that people will simply agree to having occasional reductions in energy availability. But certainly, the greatest difficulty and uncertainty is linked to that last 10%.

Our goal should be to have that problem soon.

“A great deal can be accomplished just by substituting natural gas combined cycle power plants for coal plants.”

Yes, if by “a great deal” you mean the release of greenhouse gasses into the atmosphere. Before extolling the virtues of methane, do check into it further. I once thought methane as a bridge was a good idea too, until I learned about what it involves, about leaking methane, etc. No, not really a good idea for the most part.

“Natural gas is cleaner than coal (by roughly half, depending on how you measure methane leakage), but it’s still a fossil fuel.”

My impression is that every time we learn something new about leakage, it is that the leakage is worse than we previously thought.

“If you build out a bunch of natural gas plants to get to 60 percent, then you’re stuck shutting them down to get past 60 percent.”

Well put.

Do read the article, but please, keep in mind that it is unfair (in the context of an argument) to attribute undue perfection to one option while emphasizing uncertain problems with the other. We need to forge ahead into that uncertainty and speed up this whole process. Everybody get to work on this please!

Should you buy an electric car if you live in a coal state?

If most of the electricity used to charge your electric car is made by burning coal, is it still worth it, in terms of CO2 release, to buy an electric car?

Yes. And you will also save money on fuel.

Don’t believe me? Want me to show you? What, are you from Missouri or something? Fine. I’ll show you.

A few years ago, when there were no affordable electric cars that were real cars, we decided to look into buying the next best thing, a hybrid. We wanted to get the Toyota Prius because it looked like a good car, had long proven technology, and all the people we knew who had one were happy with theirs.

I mentioned this to an acquaintance, also noting that I expected that we would save money on fuel. His response was that we would never save as much money on reduced fuel use to justify the extra cost of this expensive car. Just look in any car magazine, he said. They all make this comparison in one issue or another, he said. You are crazy to do this, he said.

I disagreed with him about the crazy part. Failing to do something that you can afford to do that would decrease fossil CO2 emissions was the crazy decision. You know, given the end of civilization because of climate change, and all. But, I was concerned that we would simply not be able to afford to do it, so I resolved to look more closely into the costs and benefits.

Sure enough, it was easy to find an article in a car magazine that analyzed the difference between buying a new internal combustion engine car vs. a Prius, and that analysis clearly showed that there wouldn’t be much of a savings, and that we could lose as much as $500 a year. Yes, each year, the Prius would save gas money, but over a period of several years, the number would never add up to the thousands of dollars extra one had to spend to get the more expensive car. Buy the internal combustion care, they said.

But the article said something else about “green energy” cars that set off an alarm. It said that cars like electric cars would never catch on because they were quiet. Everybody likes the sound of the engine, especially when accelerating past some jerk on the highway, even in a relatively quiet and sedate car like a Camry.

Aha, I thought. This article is not about making rational decisions, or decisions that might be good for the environment. It is about something else entirely.

Hippie punching.

Then I thought about my acquaintance who had suggested that the Prius was a bad idea. And the hippie punching theory fell neatly into place.

So, I continued my quest for information and wisdom. I learned years ago that when you want to buy something expensive, contact a seller that you are unlikely to buy from to ask a few questions. Don’t take up too much of their time, but start your inquiry with a business that sells the product you want, but that you will walk away from in a few minutes. That lets you discover what the patter in that industry is like, what the game is, how they talk to you and what you don’t necessarily know, without it costing you dumb-points along the way. This way, when you talk to the more likely seller (in this case, the Toyota dealership on my side of town, instead of the other side of town) you are one up on the other noobs making a similar inquiry.

So I made the call, and said, “I’m really just interested in trying to decide if the Prius is worth it, given the extra cost, in terms of money saved on fuel.”

“OK, well, it often isn’t, to be honest. And I won’t lie to you. I sell the Prius and I sell non-hybrids, and I’ll be happy to sell you either one.”

Good point, I thought. He doesn’t care. Or, maybe, he just tricked me into thinking he doesn’t care! No matter, though, because I’ve already out smarted this car dealer with my “call across town first” strategy.

As these thoughts were percolating in my head, he said, “So, it really depends on the numbers. So let’s make a comparison. What car would you be buying if you didn’t get the Prius?”

“Um… actually, it would definitely be a Subaru Forester. That’s the car we are replacing, and we love the Forester. No offense to Toyota, of course…”

“Well,” he interrupted. “Everybody loves the Forester. But, it does cost several thousand dollars more than the Prius. So, I’d say, you’d save money with the Prius.”

Huh.

We bought the Prius. From him.

And now the Prius is getting older. It is still like totally new, and it will be Car # 1 for a couple of more years, I’m sure. But as the driver of Car #2 (an aging Forester) I am looking forward to my wife getting a new car at some point so we can further reduce CO2 emissions, and I don’t have to have a car, for my rare jaunt, that is likely to need a towing.

And, when I look around me, and ask around, and predict the future a little, I realize that by the time we are in the market for a new car, there will be electric cars in the same price range of that Prius, if not cheaper. So, suddenly, buying an electric car is a possibility.

And, of course, the hippie-punching argument that we will have to deal with is this: Coal is worse than gasoline, and all your electricity for your hippie-car is made by burning coal, so you are actually destroying the environment, not saving it, you dirty dumb hippie!

There are several reasons that this argument is wrong. They are listed below, and do read them all, but the last one is the one I want you to pay attention to because it is the coolest, and I’ve got a link to where you can go to find the details that prove it.

1) Even if we live in a state that uses a lot of coal to make electricity, eventually that will change. Of course, my car might be old and in the junk yard by then, so maybe it is still better to wait to by the electric car. But in a state like Minnesota, we are quickly transitioning away from coal, and in fact, the big coal plant up Route 10 a ways, that makes the electricity for my car (if I had an electric car), is being shut down as we speak.

2) Even if the electric car is a break even, or a small net negative on carbon release, it is still good, all else being nearly equal, to support the energy transition by buying an electric car and supporting that segment of the industry.

3) It is more efficient, measured in terms of fossil CO2 release, to burn a little coal to transmit electricity to an electric car than it is to ship the gasoline to the car and burn the gasoline in the car. This sound opposite from reality, and many make the argument that making the burning happen in your car is more efficient than in a distant plant, but that is not ture. While this will depend on various factors, and burning gas may be better sometimes, it often is not because the basic technology of using electricity driven magnetic energy is so vastly more efficient than the technology of using countless small controlled explosions to mechanically drive the wheels. Electric motors are so much more efficient than exploding liquid motors that trains, which are super efficient, actually use their diesel fuel to generate electricity to run their electric motors, rather than to run the wheels of the train.

4) Reason 3 assumes an efficiency difference between internal combustion and magnetics that overwhelms all the other factors, but it is hard to believe this would work in a mostly coal-to-electricity setting. But there is empirical evidence, which probably reveals the logic of reason number 3, but that I list as reason number 4 because it is based on observation rather than assumption. If you measure the difference between an internal combustion engine and an electric engine in a coal-heavy state, you a) save money and b) release less CO2.

And to get that argument, the details, the proof, GO HERE to see How Green is My EV?, a tour de force of logic and math, and empirical measurement, by David Kirtley, in which David measures the cost and CO2 savings of his Nissan Leaf, in the coal-happy state of Missouri.

I’ll put this another way. The best way to be convinced that an electric car is a good idea in a state where most electricity is generated by burning coal is if someone shows you the evidence. Where better to examine this evidence than in the Shoe Me State of Missouri???

So go and look.