Attributing major weather related disasters, such as the current wildfires in California or the recent heat waves in Japan, to climate change is a little like attributing deaths due to respiratory illness to influenza.
Before going further with that concept, let me be clear: Those extreme weather events are highly unlikely to have happened had there been no global warming. Not only does global warming increase the chances of those events happening, but also, in some cases, without global warming it would be almost impossible for certain events to occur. Warming of the planet due to the human release of greenhouse gases has quantitatively changed key aspects of the Earth’s weather system so extremes in one direction (like heat, stronger storms, flooding, etc) are more common and more severe. It also appears that human caused global warming has qualitatively changed the climate so things happen now that would simply not have been a thing in the past, or that would have been very rare indeed.*
The comparison between the flu and global warming is not an analogy. Or it wouldn’t be a very good one, in any case, assuming a good analogy takes a concept you are very familiar with and points out parallels between that system and some system you understand less. Indeed, I assume you understand the idea that a warmer world makes for more heat waves pretty clearly, and at the same time, I’m pretty sure most people don’t actually know how we even know how bad a flu season is. I don’t assume everyone understands influenza, so I know I did not just hand out an “aha!” moment by which a greater understanding of climate change will result.
It is, rather, an imperfect but serious comparison that helps us understand a third concept: why fighting over attribution of climate change, in the press and the beer halls and on the street, is stupid and bad.
Did you know that every flu season in the US, a lot of people get the flu, and some of them die? I’m pretty sure you did, and the reason you know is that you learned it on the news, or from your friends, or in health class, or by reading a book on the flu. No one disputes it. Even Fox News says it is true. You won’t see Trump tweeting in all caps about how it doesn’t actually happen.
But what you might not know is that it is the epidemiologists who tell us this, and give us important details such as “we are having a bad flu season” or “the flu hasn’t really arrived in Ohio yet but it is coming” or “other than long term care facilities, where it is still a problem, this year’s flu season is mostly over” and such, don’t directly observe the flu’s spread across the landscape. They are, rather, attributing an easily made observation to a specific cause, in a way that is conceptually similar to how climate scientists attribute wildfires and such to the human release of greenhouse gas. The methods are different, and the climate scientists have the upper hand on their data. While epidemiologists looking at the flu only actually directly measure the presence or effect of influenza in a small number of cases, climate scientists have thousands of measurement points taking data every hour, satellites, and all sorts of other probes.
When someone dies of influenza, we usually know that because there is an autopsy or some other carefully made observation in a hospital. When someone is put in an intensive care unit because of influenza, we usually know that. When a privileged wealthy suburban kid gets a really bad case of something, they will often get tested and then we’ll know for sure if they have the flu, as opposed to some other thing. But when most people get all those symptoms we think of as “the flu,” we never really know what they had, and it is simply true that during the flu season, there are a lot of other things going around, and only a percentage of people “with the flu” are actually infected with influenza.
But, it turns out that when influenza spreads through a population, the relatively small scale sampling that government epidemiologists do picks that spread up, and allows for reasonable estimates of what kinds of virus is out there, how sick it is making people, and a rough estimate of how dense the disease is on the landscape.
Meanwhile, schools keep track of kids being out sick, and hospitals and clinics keep track of who is complaining about flu like symptoms. So, epidemiologists (and I’m oversimplifying here) combine information they have from direct observation of actual influenza infection with information they have on “flu like symptoms” appearance and other indicators of general public health, with carefully developed and continuously refined modeling and statistical analysis. They then attribute a certain percentage of the flu like symptoms to the actual flu, not on a case by case basis but on a population level, by state and across the country, using science.
And almost nobody even knows that, and almost nobody really cares. We just want to know how bad it is, what the timing is, and that sort of thing. We trust the system to give us that information and it does. We know they know a lot more than we do about how do to this, and we are busy with other things. It would require some powerful derp to come up with a conspiracy theory about how the flu isn’t real. If anything, the average American has it backwards. People get really sick from a bad version of the common cold and claim they have the flu a lot more often than people get the flu and claim there is no such thing as influenza.
At present, thanks to a recent paper in Nature and some talk in the New York Times and elsewhere, we are seeing a lot of talk about attribution, the process of linking global warming to weather disasters. But I warn you that much of it is uninformed and somewhat misleading. For example, a recent article in a major science oriented magazine talked about attribution of weather events to climate change, and made the valid points that a) we can do that and b) yes, much of what we see happening in the area of bad weather is climate change caused. But that article missed a LOT of key information about attribution science, focusing, I assume for rhetorical reasons, on only one part of attribution science. Unfortunately the author chose the method of attribution that tends to underestimate the link between cause and effect.
I’m pretty sure the same thing would happen if we saw a major public discussion on influenza. You might learn a lot from reading the public literature, but you wouldn’t qualify for a Masters degree in epidemiology on the basis of that learning.
It would like a little like the famous Harris cartoon shown here. But instead of “then a miracle occurs” it would be “this part is complex so I’ll skip it.” And it is complex.
In climate science, there are a number of very complex problems that cause scientists to not be able to directly communicate to the average person what is happening. A great example is the understanding of “sensitivity.” Broadly speaking, this means just how much will global temperature change with a change in atmospheric greenhouse gas. This is incredibly complicated to figure out, and requires a number of assumptions that we are not totally certain about. However, the overall theoretical framework is solid and unassailable. But since some of the details have wiggle room, the actual numbers are hard to pin down. Then, once a reasonable range is produced, there is a fair amount of wiggle room as to when the change in temperature will be fully realized. The fact that it takes a certain amount of time is actually related to the fact that there must be a range of estimates, because rates of change are in some cases linked to how much change there will be. (Ie., methane is a powerful greenhouse gas, but it breaks down over years or decades. So “postive feedback” from methane can exacerbate warming and cause other systems to jump in and also exacerbate warming. But how much of this happens will depend on the rate methane is introduced and how fast it breaks down. And since much of the methane that is added to the environment comes form melting permafrost or warming Arctic seas that cover underwater solid methane, adding sea level rise can change those calculations … and so on and so forth.)
Skipping the complex step, or totally ignoring the more complex methodologies, has a benefit. This may make it easier to get the point across.
But it has a serious downside. It allows nefarious wizards to work their magic. This is an easy extension of Clarke’s third law, “Any sufficiently advanced technology is indistinguishable from magic.” We all assume, in this modern well informed world, that this law applies only to some other people in some other place or time where they don’t have radios. But it very much applies to us. If the details of the science are beyond comprehension if you don’t have the right PhD, or worse, left out of the conversation entirely because the author of the public literature doesn’t understand (or even know about) it, then nefarious wizards can swoop in and make up stuff that is based on equally hidden logic or method.
Scientists using science that includes methods hidden for the benefit of explanation** allows for anti-science actors to swoop in and manipulate that ignorance, manipulate that view of knowledge as the product of magic, and manipulate the weak of mind or give tools to those who prosper from the spread of willful ignorance. The nefarious wizards exploit almost unavoidably occult scientific method to control the deplorables and serve the purveyors of dark money.
I proffer the parallel cases of tracking flu seasons and attributing bad weather to anthropogenic climate change to point out that the difference in the debate about the two is a matter of nefarious wizardry. Next time you run into a climate science denier, not only check your wallet, but makes sure your defense against the dark arts skills are up to snuff.
*It is possible to imagine a world without hurricanes, if the oceans and continents were configured a certain way. In the modern configuration of continents and oceans, hurricanes are concentrated in specific areas of the ocean, and occur during certain time frames. When they occur, they tend to form in certain places, grow over a wide range of time frames, but usually not too fast, and they have characteristics that are determined by how hurricanes form and maintain in relation to the environment around them. Many of these features show signs of changing, or have simply gone off the charts already.
Hurricanes have become more common, and stronger. There are eight main regions in which tropical cyclones (which includes hurricanes) form. The dates of the observations of each area’s most powerful storm (there are nine because Australia has a tie) are 1979, 1999, 1999, 2003, 2004, 2004, 2005, 2015, and 2016. A hurricane forming in certain areas is very rare. A hurricane in the South Atlantic is unheard of. In recent years we’ve had one South Atlantic hurricane, and at least one major storm formed in the part of the Indian Ocean basin where no one was expecting one to form. A hurricane limits its own growth by churning hot surface water into deeper cooler water is common, but recently hurricanes that do not to that because there are no deeper cool waters in that churning zone have happened several times in recent years. A hurricane that goes from “nothing to see here” to full on hurricane in one or two days is almost impossible. We thought. Now, rapid formation is more common, which is a big problem since it can take days for the current system to decide if there should be an evacuation, and to carry it out. A major quantitative shift in the hurricane system in the US is the change from the assumption of evacuation to the assumption of not evacuating in certain areas no matter how bad the storm is. That is a combined function of increased storm severity, decreased formation time, and unfettered thoughtless human development in certain areas.
**I do not refer here to methods hidden completely, hidden from other scientists, or the interested public. That is a separte issue, and is not very common. Pretty much all of the climate science is public and open, despite accusations from deniers of science.