Tag Archives: Warmest Year

Climate change is real, it is a problem, and it is getting worse

The year 2016 was messy and expensive and full of climate change enhanced weather disasters. There were, according to Jeff Masters and Bob Henson, over 30 billion dollar disasters last year.

This is the fourth-largest number on record going back to 1990, said insurance broker Aon Benfield in their Annual Global Climate and Catastrophe Report issued January 17 (updated January 23 to include a 31st billion-dollar disaster, the Gatlinburg, Tennessee fire.) The average from 1990 – 2016 was 22 billion-dollar weather disasters; the highest number since 1990 was 41, in 2013.

The frequency of flood disasters in Europe have doubled over 35 years.

The number of devastating floods that trigger insurance payouts has more than doubled in Europe since 1980, according to new research by Munich Re, the world’s largest reinsurance company.

The firm’s latest data shows there were 30 flood events requiring insurance payouts in Europe last year – up from just 12 in 1980 – and the trend is set to accelerate as warming temperatures drive up atmospheric moisture levels.

Globally, 2016 saw 384 flood disasters, compared with 58 in 1980, although the greater proportional increase probably reflects poorer flood protections and lower building standards in the developing world

As I’m sure you’ve heard, he year 2016 was the hottest year on record, and 2017 is also going to be hot. (I personally doubt 2017 will be hotter, but then again, I was thinking that 2016 might not break the 2015 record.)

Mark Bgoslough as an interesting piece here on how global temperature records are made, analyses, and reported. I recommend reading that. Here, I want to use a graphic he made for that item to point something outI’ve added the green lines. I’ll just leave it here without comment.


People in the northeastern US should be about 50% more concerned about global warming than everyone else, because new research suggests that this region will warm about 50% faster than the globe in coming years.

The fastest warming region in the contiguous US is the Northeast, which is projected to warm by 3°C when global warming reaches 2°C. The signal-to-noise ratio calculations indicate that the regional warming estimates remain outside the envelope of uncertainty throughout the twenty-first century, making them potentially useful to planners. The regional precipitation projections for global warming of 1.5°C and 2°C are uncertain, but the eastern US is projected to experience wetter winters and the Great Plains and the Northwest US are projected to experience drier summers in the future.

John Abraham summarizes and interprets the results here.

Regardless of the so-called temperature target, what this study shows is that even if we do keep the globe as a whole to a 2°C temperature increase, some regions, like the Northeast United States will far exceed this threshold. So, what is “safe” for the world is unsafe for certain regions.

A recent poll tells us that 90% of rural Australians are concerned about the impacts of climate change. Most were concerned about drought and flooding. Fewer than half this coal fire power stations should be phased out.

I think that if you did a similar poll in the US, you would find that most rural Americans don’t are about climate change, and even fewer think coal should be phased out. Since all rural people, Australians or Americans and everyone else, have already been affected to at least some degree by climate change, and since the science strongly suggests that things will get much worse for them in the future, all of these folks should be concerned and all of them should be for doing something about it. The good news is that the cognitive dissonance we see in the Australia between climate change and concern may be a harbinger for future changes in American attitudes. Australia has probably been affected by severe weather caused or enhanced by climate change to a much larger degree than has Rural America. In short, I expect disdain for coal to catch up to concern about climate change in Oz, while in America, eventually, people will get more and more on board with both.

Americans are more concerned about not offending farmers than they are about saving them. In American farmlands, we expect climate change to reduce staple crop production substantially by the end of the century. The farmers need to get on board more quickly if they want their grandchildren to be able to be farmers too.

A question on everyone’s mind: “Is the California Drought over and what does this mean?”

It looks over. Reservoirs are filling, snow is piling up in the mountains, everything is wet.

However, there are several things still to consider. For one, the recharging of water supplies is not complete, and if near-zero-rain conditions return right away, the drought will slowly return. This is of course always a concern, but right now we have a slightly different question to ask for California. Is it the case that the conditions that led to the California drought are the “new normal” (a phrase I’m not really happy with) I the sense that from now on, there will be less snow pack, less rainfall, etc. In other words, is it the case that the future of California is generally much dryer all the time with the occasional drenching rainy season, because of climate change?

We don’t know yet, but there is one fairly obvious area of concern: Snow pack. Snow pack plays a role in watering California. Snow pack forms during the rainy winter, and slowly melts thereafter. If that precipitation wasn’t temporarily stored up as snow, the winter rains would be more flooding, and there would be less water retained in the system for the rest of the year. Increasing warmth, due to global warming, has caused more of the precipitation that falls in the mountains to be rain rather than snow, and it has caused the snow to melt more quickly.

Warmer temperatures also mean more evaporation, so getting everything all wet and squishy for a few months during the Winter may mean less a few months later when a warm and dry atmosphere starts to drunk the moisture out of the ground and off the reservoir’s surfaces at an accelerated rate.

This piece by Andrea Thompson at Climate Central does a great job of summarizing the current situation in California.

I have been noting for years (well, for a couple of years) that the best available paleo data suggest that the current levels of CO2 and/or temperature, protracted over a reasonable amount of time, should be associated with sea levels of about 8 meters. In other words, if you are worried about sea level rise, and you should be, the amount of sea level rise that we are currently locked into is enough to inundate much of Southeast Asia’s rice growing land, large parts of various US states such as Louisiana and Florida, and to cause retreat from many of the world’s most densely settled cities.

Over recent months the interface between the scientific research and journalism has started to squeeze out the occasional example of this startling fact, one we’ve known for years but have been afraid to say about else we be considered non reputable. From the Independent:

The last time ocean temperatures were this warm, sea levels were up to nine metres higher than they are today, according to the findings of a new study, which were described as “extremely worrying” by one expert.

The researchers took samples of sediment from 83 different sites around the world, and these “natural thermometers” enabled them to work out what the sea surface temperature had been more than 125,000 years ago.

How long will this take? Nobody knows. This depends on how fast the major glaciers melt.

Carlos Gimenez, mayor of Miami, is already rolling up his pants:

“Let’s be clear, sea-level rise is a very serious concern for Miami-Dade County and all of South Florida,” Mayor Carlos Gimenez told the crowd Wednesday morning at the South Miami-Dade Cultural Arts Center during his annual State of the County address. “It’s not a theory. It’s a fact. We live it every day.”

Read more here.

The British Antarctic Survey is abandoning its Halley Base, in Antarctic, because the ice shelf on which it is located had developed a huge crack, so it is no longer safe to be there. They’l be out by the end of March. The crack is known as the “Halloween Crack.” Here’s a short video:

In the Arctic, sea ice growth so far this year is below any previously observed year. From the National Snoe and Ice Data Center:
Screen Shot 2017-02-05 at 12.08.19 PM

About Bangladesh:

Along the coast lies Kutubdia, an island in the Bay of Bengal where lush green rice fields give way to acres and acres of flat fields. Consisting of small rectangles of varying hues of brown, they are salt fields. The encroachment of saline water from rising tides has made rice farming impossible.

They now “farm” salt. That is not euphemism for farming in salty conditions. They take salt out of the water. That is not a business that will have a lot of future when everybody else along the coasts of low lying countries are doing it as well.

At the end of 2015, it looked like the negative effects of climate change were accelerating. That turned out to be true, and acceleration of the effects continues. This is probably not a good time to official deny the reality and importance of climate change, but that seems to be what we are doing in the United States.

How warm was 2015, how warm will 2016 be?

The year that just finished, 2015, was the warmest year recorded in the instrumental record. The actual data for December is not officially available yet, but my friend and colleague John Abraham keeps track of the global surface temperature daily and has done an amazing job at estimating the final temperature anomaly value that is eventually reported in each of several databases. He has provided a graph using his estimated value, above.

There are two major contributing factors, maybe three depending on how you count everything, to 2015 being the warmest year. The main factor is, of course, global warming. The Earth’s surface temperature is going up because of the Greenhouse Effect, and along with that, we are seeing remarkable climate disruption, including floods, other inclement weather, and a host of problems. On top of this, the last part of 2015 saw a strong El Niño, the strongest recorded in historic documents. This weather event, which involves the departure of ocean-stored heat in the Pacific into the atmosphere, is continuing, though it will likely peak soon and begin to decline (but see below). That is all we need, really, to explain 2015, but there may be a third factor that overlaps with those two worth singling out. Some areas of the world’s oceans, including parts of the Atlantic and the Pacific (outside the usual Pacific El Niño warming effect), have been exceptionally warm on the surface. This is really just part of the whole anthropogenic global warming thing, but seems more extreme this year. In other words, it seems as though the ocean is putting more stored heat into the atmosphere than just that part that El Niño contributes, and the surface temperature measurements include sea surface temperature.

How warm will 2016 be? Playing the odds, it would always be a good bet that the next year will be warmer than the current year, on average, because global warming continues. However, even as the surface temperature trends upwards over time, the actual measurements from year to year wiggle up and down a fair amount owing to a number of factors. So, on average, if you bet on warming for each subsequent year you would overall win, but you might lose that bet during some years. (In fact, you could lose your shirt if warming happens to occur with infrequent large spikes interspersed among years that see modest cooling, so be careful!)

However, 2016 is actually more than 50-something percent likely to be warm compared to 2015. One reason is that El Nino will continue for the first part of 2016, and the effect that El Niño has on surface temperature is delayed. The peak effect occurs several months after the peak of the El Niño itself. So, if El Niño peaks in February, for example, we will have global warming + El Niño enhancement through early summer. So at least half of the months of 2016 will be very warm. There is a very good chance, then, that 2016 will be warmer even than 2015.

Mark Boslough, a physicist who writes quite a bit about Global Warming, has made a bet along these lines. He is not betting that 2016 will be warmer than 2015, but he is betting on the long term upward trend of the Earth’s surface temperatures. He’s really putting his money where his mouth is, by the way, to the tune of 25,000 US dollars. The details of his bet are here. So far, as far as I know, none of those in the climate science denial world have taken him up.

WMO: 2011-2015 is the warmest five year period on record

The World Meteorological Organization has announced that they expect 2015 to be the warmest year on record, and that we are in the warmest five year period on record. We are speaking here of global surface temperatures, though similar descriptions probably apply to the upper 2000 meters or so of the ocean as well.

The global average surface temperature in 2015 is likely to be the warmest on record and to reach the symbolic and significant milestone of 1° Celsius above the pre-industrial era. This is due to a combination of a strong El Niño and human-induced global warming, according to the World Meteorological Organization (WMO).

The years 2011-2015 have been the warmest five-year period on record, with many extreme weather events – especially heatwaves – influenced by climate change, according to a WMO five-year analysis.

“The state of the global climate in 2015 will make history as for a number of reasons,” said WMO Secretary-General Michel Jarraud. “Levels of greenhouse gases in the atmosphere reached new highs and in the Northern hemisphere spring 2015 the three-month global average concentration of CO2 crossed the 400 parts per million barrier for the first time. 2015 is likely to be the hottest year on record, with ocean surface temperatures at the highest level since measurements began. It is probable that the 1°C Celsius threshold will be crossed,” said Mr Jarraud. “This is all bad news for the planet.”

Greenhouse gas emissions, which are causing climate change, can be controlled. We have the knowledge and the tools to act. We have a choice. Future generations will not.”

They have some nice graphics:

Global annual average temperatures anomalies (relative to 1961-1990) based on an average of three global temperature data sets (HadCRUT., GISTEMP and NOAAGlobalTemp) from 1950 to 2014. The 2015 average is based on data from January to October. Bars are coloured according to whether the year was classified as an El Niño year (red), a La Niña year (blue) or an ENSO-neutral year (grey).Note uncertainty ranges are not shown, but are around 0.1°C.
Global annual average temperatures anomalies (relative to 1961-1990) based on an average of three global temperature data sets (HadCRUT., GISTEMP and NOAAGlobalTemp) from 1950 to 2014. The 2015 average is based on data from January to October. Bars are coloured according to whether the year was classified as an El Niño year (red), a La Niña year (blue) or an ENSO-neutral year (grey).Note uncertainty ranges are not shown, but are around 0.1°C.
Ocean heat content down to a depth  2000m. Three-month (red), annual (black) and 5-year (blue) averages are shown. Source: NOAA NCEI
Ocean heat content down to a depth 2000m. Three-month (red), annual (black) and 5-year (blue) averages are shown. Source: NOAA NCEI

Caption for the graphic at the top of the post:

Global annual average near-surface temperature anomalies from HadCRUT4.4.0.0 (Black line and grey area indicating the 95% uncertainty range), GISTEMP (blue) and NOAAGlobalTemp (orange). The average for 2015 is a provisional figure based on the months January to October 2015. Source: Met Office Hadley Centre.

Will 2015 be warmer than 2014?

That is a good question, and difficult to answer. If it turns out to be, it will be the warmest calendar year in the instrumental record, which goes back into the 19th century.

Regardless of what El Nino (ENSO) does, 2015 will be a warm year. Why? Because everything is warm and getting warmer and even if 2015 is less warm than 2014, it will be warm. There is no other possibility.

Even without the effects of El Nino, though, it is possible that 2015 will be warmer than 2014 because we see a lot of heat out there. If the present, relatively weak El Nino continues for a while, it will likely increase the chance that 2015 will be warmer than 2014. But current predictions suggest that 2014 will not only continue to have a strengthening El Nino, but El Nino conditions may either continue or repeat over 2015 and beyond. If that happens, not only is 2015 likely to be the warmest year in the instrumental record (since 1880) but 2016 may be in the running to be even warmer.

So far each month of 2015 has been very warm (see graph above) overall (the “zero” on the Y-axis of that graph represents the 20th century mean surface temperature). This month, April, is not excessively warm. Likely when April is plotted for 2015 on this graph, it will be either cooler then or around the same as last April.

Obviously we won’t know until the year is over, and given that climate change is a medium term phenomenon best measured in decades, we shouldn’t be in such a hurry to know these numbers. But, given that climate change is the existential issue of our day and the data become available month by month, we are not going to ignore the march of surface temperatures. We are going to, rather justifiably, be interested in what happens, month by month, as it happens.

At the end of the month, climate scientists such as my friend John Abraham, who is tracking global temperatures daily, will be able to produce a very good estimate of what the major data bases (such as NASA GISS, used here) will say, but those data bases won’t be officially updated until around the middle of the following month or so. So stay tuned.

Added: For those keeping track, I made a new version of the above graph. The red line represent the monthly anomaly values required (on average) for the rest of the year for 2015 to equal 2014. I also extended the Y-axis to 100 because the warmest month in the GISS database is in the 90s, just in case such a very warm month occurs. It is likely that April 2015 will not e as warm as April 2014 but it will likely be above the red line.


We just had the warmest “year” again

A year is 12 months long. It is also the period of time between January and December, inclusively. But you can use that first definition (we do it all the time) when appropriate. So, we can ask the question, how does the last 12 months, ending at the end of January 2015, compare to previous 12 month time periods in terms of global surface temperature?

We can do this using a moving average. A moving average for a series of values is the average of a certain number of values in sequence, calculated to correspond to each value. So a one year (12 month) moving average of temperature would be calculated by taking the average of the 12 months that end in January 2015, then the 12 months that end in December 2014, then November 2014, etc, going backwards in time.

In some ways this is a preferable measure than taking each year’s value. There are two reasons a 12 month moving average is good. First, it is 12 months long so the variation that happens across a year in surface temperature values is included in the average, so that relatively unimportant squiggling up and down of the data is dampened. Second, it lets us see the march of temperature change over time.

I used the NASA GISS data base, which just updated its value for January, to calculate a 12 month moving average for the entire record, which begins in 1880. January, as you will recall, was the second warmest January in the entire record. (For those keeping track, February of 2015 promises to be pretty warm too, and will without a doubt be warmer than February 2014, because that was an oddly cool month.) The temperature anomaly value for the last 12 months (up through January 2014) is about 68 (1/100ths of a degree C, the standard number) above the baseline used by NASA. That is the highest value ever for a 12 month period, so just as 2014 was the warmest year on record in that database, the last 12 months were also the warmest year (defined as a 12 month period) in that record.

Here’s the graph:

There is nothing surprising here. Global warming is happening. We’ll continue to have many 12 month periods which are the warmest ever, along with the occasional 12 month period which is not, because the temperature squiggles up and down as it trends upward.

Also covered HERE.

At All Scales, Global Warming Is Real

Large ponderous entities like the IPCC or government agencies like NOAA take forever to make basic statements about climate change, for a variety of reasons. They are going to have to speed up their process or risk losing some relevance. Among the coming problems we anticipate with global warming will be events that have huge, widespread effects and that happen in time scales of weeks or months, or a season, and having a nice governmental report about it two years later isn’t going to do anybody any good. So let’s see to that problem, please (looking sternly at IPCC and NOAA).

But that’s not really what I want to talk about here. Rather, I want to give a wether/climate report that operates at several scales because the information comes to us on several scales and is about stuff that happens at several scales.

First, expect excessive heat in 2012! Or, rather, expect that when the data are finished being analyzed, 2012 will be one of the top ten hottest years on record, despite the fact that the whiny-pants climate science denialists keep saying that global warming has stopped. This is from an annual report from NOAA that looks at the year as a whole, the previous year, many months after the year is over. Also, the Arctic is melting much faster than anyone expected over the last decade or so:

Worldwide, 2012 was among the 10 warmest years on record according to the 2012 State of the Climate report released online today by the American Meteorological Society (AMS). The peer-reviewed report, with scientists from NOAA’s National Climatic Data Center in Asheville, N.C., serving as lead editors, was compiled by 384 scientists from 52 countries (highlights, full report). It provides a detailed update on global climate indicators, notable weather events, and other data collected by environmental monitoring stations and instruments on land, sea, ice, and sky.

“Many of the events that made 2012 such an interesting year are part of the long-term trends we see in a changing and varying climate — carbon levels are climbing, sea levels are rising, Arctic sea ice is melting, and our planet as a whole is becoming a warmer place,” said Acting NOAA Administrator Kathryn D. Sullivan, Ph.D. “This annual report is well-researched, well-respected, and well-used; it is a superb example of the timely, actionable climate information that people need from NOAA to help prepare for extremes in our ever-changing environment.”

Conditions in the Arctic were a major story of 2012, with the region experiencing unprecedented change and breaking several records. Sea ice shrank to its smallest “summer minimum” extent since satellite records began 34 years ago. In addition, more than 97 percent of the Greenland ice sheet showed some form of melt during the summer, four times greater than the 1981–2010 average melt extent.

So, here we have two scales of events being reported at one large scale of reporting and study. How does one year stand among more than a century of years, we learn after a year of data collection and 8 months of study and report preparation? What gives in the Arctic over one year in relation to about two or three decades of years, again looked at with months of digestion of a year of data? And, the same report verifies that extreme, often killer, weather (which generally happens over scale of minutes through days) is now normal. So get used to it.

At a somewhat different scale of time, we hear this news from Alaska: The village of Newtok, on the Bering Sea, is being inundated by rising sea levels and they want to move, but political snags seem to be halting the process. This village is probably going to be entirely gone in four years and hardly anybody lives there. This gives us great hope that we will be able to move Boston and New York over the next few decades! (Not)

While we’re still in the Arctic, there is a new study that shows that the Arctic Sea ice as a whole has lost about 15% of its albedo. Here we have a decadal time scale of climate change and a week-long cycle of memic change. First, we had “OMG Santa” with puddles at the North Pole. Then we had “Oh those silly puddles” at the north pole. Now we have the puddles at the north pole being a key factor in the rapid melting of the Arctic Sea ice, which is one of the most significant things going on the Global Warming front now.

And now we are about to experience, it seems, at the scale of a few days an event that may push the current year into infamy among three decades of Arctic Ice melting; a storm is brewing in the Arctic, which together with a wind-generating high pressure system, may blast the ice off much of the Arctic Sea. This is normal … the storms being part of the ice melt. What happens is this: Every time there is a storm or set of storms, the rate of melt goes up and in between stormy periods it slows. You can see this in the minor wiggly-wobbly-ness happening within a given year of Arctic Sea ice melt like in this graph:

Wiggly Wobbly Icy Wisey Stuff
Wiggly Wobbly Icy Wisey Stuff

We are about to hit a new wobbly. A big one, I think.