Tag Archives: Antarctic Glaciers Melting

New Research: Antarctic Glaciers Destabilized

A large portion of the glacial mass in Antarctic, previously thought to be relatively stable, is now understood to be destablizing. This is new research just out in Science. The abstract is pretty clear:

Growing evidence has demonstrated the importance of ice shelf buttressing on the inland grounded ice, especially if it is resting on bedrock below sea level. Much of the Southern Antarctic Peninsula satisfies this condition and also possesses a bed slope that deepens inland. Such ice sheet geometry is potentially unstable. We use satellite altimetry and gravity observations to show that a major portion of the region has, since 2009, destabilized. Ice mass loss of the marine-terminating glaciers has rapidly accelerated from close to balance in the 2000s to a sustained rate of –56 ± 8 gigatons per year, constituting a major fraction of Antarctica’s contribution to rising sea level. The widespread, simultaneous nature of the acceleration, in the absence of a persistent atmospheric forcing, points to an oceanic driving mechanism.

The paper is “Dynamic thinning of glaciers on the Southern Antarctic Peninsula” by B. Wouters, A. Martin-Español, V. Helm, T. Flament, J. M. van Wessem, S. R. M. Ligtenberg, M. R. van den Broeke, J. L. Bamber.

Here is a simulation of grounding line retreat in action from NASA:

Karl Mathiesen at the Guardian has a writeup on the research here.

The sheet’s thickness has remained stable since satellite observations began in 1992. But Professor Jonathan Bamber of Bristol university, who co-authored the study, said that around 2009 it very suddenly began to thin by an average of 42cm each year. Some areas had fallen by up to 4m.

“It hasn’t been going up, it hasn’t been going down – until 2009. Then it just seemed to pass some kind of critical threshold and went over a cliff and it’s been losing mass at a pretty much constant, rather large, rate,” said Bamber.

The estimate of ice loss by this research might be overestimated, according to Andrew Shepherd, who notes that some of the thinning of the glacier could be due to changes in snowfall amounts on tip, rather than melting from the bottom. It will be interesting to see how this works out.

Caption for the figure at the top of the post:

Fig. 2 Mass variations for the sum of basins 23 and 24, as observed by GRACE and modeled by RACMO2.3.
Basins 23 and 24 are defined in (21, 22). The faint blue dots are the monthly GRACE anomalies with 1? error bars (20), and the thick blue line shows the anomalies with a 7-month running average applied so as to reduce noise. Cumulative SMB anomalies from RACMO2.3 are shown in red, with the light red area indicating the 1? spread in an ensemble obtained by varying the baseline period (20). The dashed light blue line shows the estimated dynamic mass loss (GRACE minus SMB). The vertical dashed lines indicate January 2003, December 2009, and July 2010, the start and ending of the different altimetry observations. (Inset) The GRACE time series for the individual basins 23 (blue) and 24 (red), before (full lines) and after (dashed lines) applying the SMB correction.