Category Archives: Science Education

STEM in 2015: Brianne Bilyeu, Maddy Love, Greg Laden and August Berkshire

Homo naledi and the Chamber of Secrets ~ Psychology’s Inner Demons ~ Chilesaurus: The One That Went Vegan ~ Neurons Alter DNA All Day, Every Day

Popular science fans may recognize some of these colorful titles from the most recent publication of Discover Magazine’s 100 Top Stories of 2015. We at Atheists Talk enjoy a good science-ing now and then, and this Sunday we’re going to talk about some of the stories shared by Discover. It’s going to be a science smorgasboard extravaganza! Join Brianne Bilyeu, August Berkshire and Maddy Love as they nerd out about the science of 2015.

Listen to the Atheist Talk Radio podcast here:

Atheist Talk Radio is a great weekly radio show that covers a wide range of topics, and often, science. However, it costs money to put the podcast on. Consider donating.

On the reception and detection of pseudo-profound bullshit

A new paper out in the journal Judgement and Decision Making by Gordon Pennycook, James Cheyne, Nathaniel Barr, Derek Koehler, and Jonathan Fugelsang. The abstract:

Although bullshit is common in everyday life and has attracted attention from philosophers, its reception (critical or ingenuous) has not, to our knowledge, been subject to empirical investigation. Here we focus on pseudo-profound bullshit, which consists of seemingly impressive assertions that are presented as true and meaningful but are actually vacuous. We presented participants with bullshit statements consisting of buzzwords randomly organized into statements with syntactic structure but no discernible meaning (e.g., “Wholeness quiets infinite phenomena”). Across multiple studies, the propensity to judge bullshit statements as profound was associated with a variety of conceptually relevant variables (e.g., intuitive cognitive style, supernatural belief). Parallel associations were less evident among profundity judgments for more conventionally profound (e.g., “A wet person does not fear the rain”) or mundane (e.g., “Newborn babies require constant attention”) statements. These results support the idea that some people are more receptive to this type of bullshit and that detecting it is not merely a matter of indiscriminate skepticism but rather a discernment of deceptive vagueness in otherwise impressive sounding claims. Our results also suggest that a bias toward accepting statements as true may be an important component of pseudo-profound bullshit receptivity.

Keywords: bullshit, bullshit detection, dual-process theories, analytic thinking, supernatural beliefs, religiosity, conspiratorial ideation, complementary and alternative medicine.

The paper is here.

Hat tip: Stephan Lewandowsky


Check out our new science podcast, Ikonokast.
________________________________

STEM Kids Holiday Presents Ideas

I know a lot of you are looking for ideas for science-related children’s presents for Christmas or whatever holiday you like to celebrate this time of year. I have a couple of ideas, and hopefully you will add some of your ideas below. Not everything that helps encourage the skills of scientific tinkering is found in a science kit, and I’ll provide a few ideas for toys that do this. Also, some of the best science experiments are found by using things that don’t come in kits, but by following the advice in books. So I’ll suggest a few books as well. Purely science kits or tools are of course an important addition to the tool box, but not everything has to be an actual science kit. A toy that is simply a toy, but that has a pro-science theme, is also a good idea, and I’ve got some suggestions there as well.

Science Experiments for Kids

There are many items out there that are explicitly science kits, such as biology kits or chemistry kits, and I’m not comfortable making specific recommendations for that sort of thing. There are many options, across a wide range of qualities, and many turn out to be fairly disappointing. I do recommend going for kits that are very specific in what they do, and not very expensive. These kits seem to serve the purpose well enough, and not a lot of investment is made in case they are not quite up to snuff.

61HAQTA55SL._SX375_BO1,204,203,200_For many, the best option may be a book that outlines science experiments you can do with common (or sometimes less common) household items.

Vicki Cobb’s “See for Yourself!: More Than 100 Amazing Experiments for Science Fairs and School Projects,” which covers a wide range of physics, chemistry, and biology. You can extract DNA, build a charge or current detector, experiment with sound waves, and experiment with sensory processing. Many of the experiments are, as the title suggests, suitable for use in a science fair, and many of the projects are adaptable so your junior scientist can include their own creative ideas (which might include combining two or more experiments). Most of the experiments include useful context and additional notes on how to alter or elaborate on the project. It is hard to pin down an age range for this book, but with adult involvement, there are experiments that will be fun for pretty little kids, and on their own, kids from middle school through high school will find it useful.

(Also by Vicki Cobb: Science Experiments You Can Eat)

bio-coverAt a somewhat higher level are the DIY lab books. Robert Bruce Thompson has produced these:

I have read and worked with the Biology and Chemistry books, and they are excellent. These books are actually designed to meet the requirements of a typical chemistry or biology course that might be taught in high school, and for most labs, require getting some higher end gear (all of which can be ordered or acquired, with information in the books on how to do this). So these are pretty serious books.

Toys That Teach: Logic, engineering skills, experimental thinking

Especially for younger kids (pre-K), some of the skills we wish to develop in support of science learning are probably best acquired with non science toys. For example, the basic wooden train tracks (originally invented, I think, by Brio, but now in many forms including Thomas the Tank Engine, Chuddington, Imaginarium, etc.) require the development of the critical skills of patience, planning and forethought, and some basic engineering and design skills. An inexpensive way of getting started on this is to buy a set that includes massive numbers of wooden train tracks in an expansion pack . You can get at a somewhat pricy price train engines that will run, battery powered, on the tracks such as Fisher-Price Thomas the Train Wooden Railway James Engine. Designing tracks that will allow these engines to run without falling over requires more care and planning, which adds an element of learning.

350-944993-847__1There are numerous toys/games that are not explicitly science, but like the train tracks are expandable and rebuild-able, requiring the development of similar skills, using marbles and tubes and shoots etc. For his birthday, Huxley got one such toy that we were very impressed with. Rated for kids 8 and above, the Techno Gears Marble Mania Glow In The Dark Galatic Adventure Play Set can be assembled by adults for younger kids to play with. While assembly (several hours) is a part of the learning experience for older kids, younger kids still learn process, causality, sequencing, as well as fine tuning (you have to mess around with the chutes and tubes to make them all work, but in ways that teach about dynamics) even without assembling them. Uses lots of batteries.

LEGO Science

Part of nudging the offspring in a scientific direction is just about making science part of the fun they are already having. LEGO is a classic toy, and has a lot of science oriented sets, even if sometimes the science is a bit odd. For example, Lego has the LEGO City Arctic Base Camp set, which is a bit pricy (because it is big) and has many sub-components such as smaller ATVs, a research camp, and a drilling truck and helicopter. All of these components (I’m pretty sure) can be obtained as separate smaller and more affordable kits, so one can pick and chose and spread it out over a few holidays. The fact that the toy is all about scientists collecting paleoclimate data and studying melting glaciers is the reason to get this kit. Having said that, the science itself is, frankly, very funny since the mini-fig-scientists seem to specialize in extracting giant ice-enclosed crystals more likely to be found in the dilithium power sources of a Star Ship.

5702015119283-2The Arctic research kit is part of the City series, which matters if you are keeping track of realistic scales.

A rare LEGO item that looks interesting but that I’ve not seen is the LEGO Cuusoo 21110 Research Institute. This is one of the many LEGO science kits designed by LEGO fans and then produced by LEGO because other LEGO fans liked it enough.

Microscopes for kids

If you are going to get one science related toy for kids, and the kid does not have a microscope, then you should probably get a microscope. I’m going to recommend two types, but there are many options out there.

qx5_microscopeFirst is a USB microscope. There are many kinds out there, and which one you get may depend on age, how many different individuals will use it, and if you already have one. We have the Digital Blue Computer Microscope Digital Camera – QX7, which is simple to use, hooks up easily, is not expensive, and seems pretty sturdy. This is entry level. One thing to note: Software that comes with this sort of microscope is generally useless, may not work, and is more troubler than it is worth. Just hook up the microscope as though it was an external camcorder and use it that way. You’ll be able to use your system’s (or installed) cam software to take stills or movies.

The other kind of microscope I recommend, and you should have both kinds, is some sort of simple hand held pocket microscope. We have the Carson 60X-100X MicroMax LED Lighted Pocket Microscope (MM-200), and it is fantastic. Give it to a bunch of kids and they will run around everywhere taking turns looking at things up close. Whatever pocket microcope you get should have a light in it. (I think they all do, but check).

Go back to the Illustrated Guide to biology experiments noted above, or other references, to find out what higher-end microscope (and related equipment) you want to go beyond these entry level items. Our higher-end microscope is actually a late 19th century design using reflected light. And, now and then, Amanda brings Huxley into the lab to show him the big fancy scopes. When he is a bit older, we’ll get some real optics, such as a medium level binocular scope with a camera.

Electronics

Getting back to the basic idea that learning patience, planning, forethought, and integrating these skills with something creative and productive, as a way to start out in science, I suggest one or more electronic project kits. People of a certain age will remember the old fashioned kits, using telegraph board style wires to hook up components fixed to a large board in different ways to produce various circuits. These days, this approach is replaced with something that reflect the process of building more accurately. I suggest a Snap Circuit kit. There are many levels, and as far as I can tell, one can upgrade from a given level to several different higher levels, with upgrade kits. The total cost is less if you go for the higher level kit right away, but that is pricy, and the difference in cost between serial upgrades and getting the biggest kit at the start is not very large.

Screen Shot 2015-11-23 at 10.29.29 AMFor this reason I recommend starting with the Snap Circuits SC-300 Electronics Discovery Kit, not the lowest end, but not very expensive. From there you can easily upgrade to a higher level kit, or, get a second specialized kit, such as the Snap Circuits Alternative Energy Green.

A few words of advice on Snap Circuits. When working with Huxley, staring at late age 3, I insisted that about every other time we played with them, we followed the instructions exactly to demonstrate this or that feature of electronics. The other times, he was free to do whatever he wanted as long as he did not make a short circuit with the battery pack, and always installed a switch in the off position while working with the circuits. In truth, there was no real danger in breaking anything (probably) or getting shocked or anything else untoward, but this helped him learn that circuits needed to be handled a certain way for effectiveness and safety. Eventually, Huxley started to design his own circuits to demonstrate complex switching, parallel vs. serial setups, etc.

Also, after observing this for a while, I realized the whole thing would be more fun with a few additional switches, so I separately ordered some of them. Then, a student of Amanda’s, hearing of Huxley’s interest, gave us his old set, so we suddenly had two of almost everything. Huxley really has learned quite a bit about how electricity works, mainly by working with the power supplies (battery packs), various switches, and, mostly, the small electric motor.

I’d love to see your suggestions, or commentary about your experiences, in the comments section!

What Americans Really Want: Science, Candidates, Debates

It is debate season for the US presidential race. As usual, science is being viewed as a debating point very differently by the two parties, at least so far. The Democratic candidates, yet to actually debate, are currently engaged in dealing policy statements about important scientific issues such as climate change. In previous election cycles, science was brought into Republican primary debates to see which candidate could make the most anti-science statements. This year it is a bit different, with climate science in particular, and one’s ability to say something intelligent-sounding about it, being a factor, though still to a very small degree.

You are probably aware of ScienceDebate.org, which has been trying to get science on the table as a standard debating topic worthy of its own entire debate among the candidates. ScienceDebate.org has commissioned a poll asking American voters what they think about science and the candidates. You can read the poll results here.

I created some graphs that re-display the poll’s results in a slightly different, and simpler, way than the original poll.

First is a set of questions about science-based challenges, the importance of science, the relationship between science and policy, and the role of journalists in advancing this conversation. I simplified the results of five distinct statements to indicate simple agreement (strong or not) vs. disagreement, across political affiliation. The result is simple. A large majority of people across all political affiliations agree with al of the statements. Variation across the statements, or across the political parties, is unimpressive. Americans, across the board, are on board with science, with policy makers dealing with science, and want journalists to address this.

Science_Debate_Selected_Poll_Results_Comparing_By_Party

The second graphic simplified the results across two questions about the importance of members of Congress understanding science and the importance of a science debate. Again, the vast majority of Americans, according to this scientific poll, agree on the importance of these things.

science_debate_questions

For more details and finer breakdowns of these results, do visit the original poll.

How To Evaluate Science Stories

I’m on my way to a taping of the Humanist Views with Host Scott Lohman. I do these now and then and have done so since I first moved to Minnesota back when it was still cold here. We’ll be talking about science knowledge, and why basic science knowledge is important. We’ll also be talking about how to go about evaluating science stories you encounter in the news, or more likely, on your Facebook feed or in other social media.

Pursuant to this, I wrote a blog post that talks about how science stories go out to the general public. I also report on a request I sent out a few days ago to my own Facebook Friends for their thoughts on which Internet sites are good science sources, and which are not so good.

So, here goes…

How a scientific finding comes to you

A first year graduate student comes up with a project. The idea is that change in A causes a change in B, and this could be important, although in truth the natural phenomenon being studied is a bit esoteric. After a year or so of experimentation, learning, literature search, and thinking about the problem, the graduate student comes to understand that a change in the level of disorder in the state of A is associated under certain conditions, some known and some unknown, with a threshold change in B, but it doesn’t always happen. The threshold itself is as yet unmeasured, but seems like a threshold. In the end, more questions have been raised than answered, but also, more is known about A and B and related things than before.

Eventually, there is a paper, peer reviewed, and about to be published. The University Press Office is informed. The University writer who covers this area of science is on vacation, so a different person not so familiar with that area of science takes on the job of writing the press release. An interview with the graduate student doesn’t go too well, because scientists have dialects that are sometimes more difficult for a non-specialist to understand than are the diverse dialects of a widely spoken language (like English) by someone unaccustomed to them.

During the conversation the writer presses the graduate student for more on the significance of the study. The graduate student claims the study results are significant. But the writer is thinking “cures cancer” or “a better mousetrap” significance, and the graduate student is thinking about statistical tests and p-values. But, during the conversation something is said about something that sounds significant to the writer. The paper is about statistical variation in ATP use in a muscle fiber, and muscle fibers are what’s messed up in many different diseases, as well as in aging. So now the writer contacts a couple of scientists unrelated to the exact research project and asks about its significance. During that conversation it is made clear that curing heart disease is important, even though this research really has little to do with it. But it could be related in the sense that the more we know about muscle and ATP in muscle fibers, the more we know in general, and that can’t be bad when it comes to heart disease, or a long list of other problems.

So the writer writes up the story, and focuses on the value this new research will have in curing heart disease and multiple sclerosis. The real meaning of the original research, which is that we should be measuring the order and disorder of the state of a particular molecule in muscle fibre, instead of measuring, for instance, how much the muscle twitches in a test tube, is not even mentioned in the writeup because it is too difficult to understand and too esoteric.

Under deadline, the writer asks the editor if the near final copy should be run by the graduate student to see if it is right. The editor says no, explaining that “we don’t let the people we interview see the copy because it would not be fair to the other people you interviewed,” or some such excuse. So the copy moves along in the process. The editor creates a title that makes the research look sexy. The writer, feeling the title might be misleading, asks that the title be toned down a bit, and the editor agrees. But the process of putting the press release onto the University web site has already begun, and the original, overstated, title is still in the HTML Metacode where it will show up as the title on a Facebook post about the research.

Then, somebody spots the research and posts it on their Facebook feed. It gets shared and shared and shared and shared, with the original bogus title on top of every share. Almost nobody reads the text under the title; had they done, they would notice a conflict between the title and the text. Even fewer people click through and read the original text of the press release, so almost no one notices that there may be more, or really, less, to the story than the title suggests. Even fewer people, maybe one in 1,000, have a look at the original article, and if they do, they don’t understand much of it because the process of publishing peer reviewed papers also involved making science being reported less, rather than more, understandable. Also, it is only an abstract because the paper is behind a firewall.

Everybody is now stupider than they were before this whole thing started.

(See a cartoon version of this here, hat tip: Michael Tobis.)

And, importantly, this is how science gets muddled even when there are sincere efforts to not muddle it, and in the absence of nefarious muddling by anti-science operatives.

This is not how it goes with all scientific stories. Many scientists, often those once or twice burned, are more careful in dealing with press offices. Many press offices are actually pretty good, and have great writers, and the press releases they produce are better. Many stories get picked up by crack science writers and bloggers who bother to read the original paper, talk to experts, contact the author with questions, then do a good job of presenting the material. But often, something like the above, or a subset of the above, happens. Stupider, many become.

How does the average person who is interested in science, or a particular topic important to them because of something in their life, avoid becoming stupider, and maybe, just possibly, become even smarter? Here are a few guidelines, most of which have to do with encountering this information on the Internet.

1) Do not assume that a title reflects the research. It often does not.

2) Do not assume that a third party writeup is not messed up. It often is.

3) The internet is made of tubes. Some of these tubes are little more than conduits of original press releases, scraped from myriad sources and turned into what look like news stories. These are good places to find out about newly published research. They are entirely unreliable to find out what that research is about. They are like search engines that lie.

4) Find interpretive outlets you can trust. There are many science writers and science bloggers (overlapping entities) who regularly do a good job of describing current or recent research.

5) Time is your friend. Often, even among the better interpretive sites, mistakes are made and research is accidentally mis-represented. But usually, eventually, corrections are made. An absolutely fresh report of new research may be misleading, while just a week or so later, the reporting gets straightened out.

6) In some fields, there are people who are involved in the research (specifically or generally) who also write about it in a blog. The best example I can think of has to do with climate change. RealClimate blog is written by climate scientists. Very often, the blog posts they produce are written by the actual authors of the new papers. They write these blog posts specifically to inform the general interested (and at least somewhat field-aware) public of their findings. Sometimes they write blog posts specifically designed to address misunderstandings that have emerged, as described above, or as is often the case in climate science, because nefarious science deniers have muddled up the message on purpose. Similarly, there are science based medicine sites that write about health and medicine related news, though in my experience these bloggers are experts in their fields but not generally the authors of the work they are writing about, as is often the case with RealClimate.

PLEASE NOTICE THE TWO SPECIALIZED SEARCH ENGINES IN THE SIDEBAR TO THE RIGHT, ONE FOR GOOD SCIENCE SITES IN GENERAL (SKEPTICAL SEARCH ENGINE) ONE FOR CLIMATE SCIENCE SPECIFICALLY!!!

7) In some fields, there are relatively reliable web sites that cover everything encyclopedia style. Again, with Climate, SkepticalScience.com covers every aspect of climate change, as well as denial of climate change science. If something isn’t there, it is because it is so new it hasn’t been covered yet, but will be. You can even contact the authors of this site and ask for more, or for clarification. Other sites are more like topical sites. This is trickier. There are bogus health and diet sites and there are good health and diet sites. Nature News is crap according to everyone I know (I don’t track that site). WebMD tends to be reasonably good, The Mayo Clinic’s site is very reliable. The CDC does a good job of covering disease. These sites will be less current, and very cautious. They won’t say stuff if they are afraid you will misuse the information, but they go out of their way to address common goofs people make in their thinking about the issues they cover.

8) This should be number 1, but in fact, applies to very few people for various reasons, so I put it down here. If you want to be able to evaluate new scientific research in a given area, learn all about that area and become an amateur expert on it. That is not easy. People will tell you it is easy, and claim they have done this. It is not and they did not – if they thought it was easy they missed something. But if your sources are good, you are honest with yourself, have a bit of training or experience with thinking about things in a scientific way (and haven’t simply told yourself you can do this) then you can make this happen.

9) Pursuant to number 8, use sources like Google Scholar to find actual peer reviewed research of interest to you and read it. Many peer reviewed papers will not be easily available to you because they are behind firewalls, but many are OpenAccess. Others, probably all others, can be obtained at a good library, though that can be a lot of trouble. For something really important, where your need for a paper goes beyond your own interest – maybe you are a teacher teaching about the topic – go ahead and contact the paper’s “corresponding author” and ask for a copy. If the paper is an older one, go first to the authors’ web sites and see if there is a downloadable copy there, often this is the case. Try Googling the entire title of the paper, in quotes, followed by the words “download” and “PDF.” Every once in a while this works, just like magic.

There are some great science communicators some of whom are also scientists.

A couple of quick tips on how to tell a good communicator:

  • They communicate in the field they work in, or at least, communicate a lot in. So they know stuff.
  • When they talk they make sense (by itself not a good clue, but helpful).
  • They manage to use some big words or concepts but make them fully understood.
  • They are often interviewed on comedy central, the only really good news network.

Caution: self styled skeptics are often bad sources because they really do think they understand the science, but may not.

  • As a rule if a non-specialist or highly experienced writer tells you that a certain area of science is simple to understand, check your wallet.
  • If a skeptic tells you that “many peer reviewed studies” have proven/disproven something, check your wallet. Then check for the studies.
  • If an argument is the counter to the argument that the science is controlled by big business, chances are both the original argument and the counter argument are worthless.
  • Notice how self styled skeptics often follow a party line that is as much derived from authority as any other argument they may reject because it is derived from authority.

So what are some good science sources, and what are the bad ones?

A few days ago I asked my Facebook friends to suggest what they thought were good, vs. bad, sources on science. Below I’ve placed their recommendations, without links. That is partly because I don’t want to have links to bad sources on this site. If you enter the term supplied here you can find the referenced resources easily.

If you disagree with anything on this list, or want to add to it, just drop a comment below.

I have not included sites like Physorg and other science news aggregator sites. See above for my opinion on those sites. Interestingly, these sites were listed by Facebook friends as either bad or good. In truth, they are probably either bad or good depending on what you do with them.

Not everything here is exactly a science site but you can see where those listings are still relevant.

Science Sources People Say Are Good

The Global Warming Fact of the Day Facebook Page
RealClimate
SkepticalScience.com
Science Based Medicine
Bad Astronomy
PolitiFact
Christian Science Monitor
Wikipedia (Especially as a really smart search engine)
Talk Origin
SCOTUSBlog
Federation of American Scientists
Cultural Cognition Project
Questia
Mayo Clinic
Carl Zimmer
XKCD

Science Sources People Say Are Bad

Whats Up With That
Briebart
InfoWars
Natural News
The Truth Wins
Thunderbolts.info
Answers in Genesis
Discovery Institute
Real Science
Dr. Oz
Mercola
Collective Evolution
Food Babe
Spirit Science
International Medical Council on Vaccination

Climate Science As A Second Front for Biology Teachers

The American Biology Teacher has hosted a guest editorial by Glenn Branch and Minda Berbeco of the NCSE. The editorial points out that climate science is under a similar sort of anti-science attack as evolution has been for years, though generally with different (less religious) motivations. Also noted is the problem of fitting climate change into the curriculum, especially in biology classes. Indeed, biology teachers are already having a hard time getting the standard fare on the plate. In recent years, for example, the AP biology curriculum has jettisoned almost everything about plants, which were previously used as examples of physiology owing to both their relevance and the relative ease of using plants in biology labs. Branch and Berbeco note that climate change has not made its way that far into the biology classrooms, but there are already anti-science efforts to keep it out.

… a backlash against the inclusion of climate science – and anthropogenic climate change in particular – in the science classroom is under way. For example, when West Virginia became the thirteenth state to adopt the NGSS in December 2014, it was discovered that beforehand a member of the state board of education successfully called for changes that downplayed climate change… Nationally, according to a survey of 555 K–12 teachers who teach climate change, 36% were pressured to teach “both sides” of a supposed scientific controversy, and 5% were required to do so.

Minda_BerbecoI interviewed Minda Berbeco, who is the Programs and Policy Director at the National Center for Science Education, about climate change in the classroom.

Question: Should Earth System Science (which would include climate change) become one of the core areas of science teaching in high schools? If so, are there efforts underway to move this along?

Answer: Absolutely, Earth systems are a core concept in the Next Generation Science Standards, which are being adopted across the country right now. Understanding Earth systems is central to understanding the world around us, and intersects every other type of science from biology to chemistry to physics. Climate change is, of course, an important piece of understanding Earth systems, as it too intersects these other topics and is a compelling topic that relates directly to how humans can impact the planet.

Question: My background is more in biology but as a palaeoanthropologist I’ve studied several areas of what would might be classified as “Earth Science” or even “Physical Science” so I’m more comfortable with a cross disciplinary approach. Since climate change is normally considered a physical science (in college or advanced studies) and high schools tend to stick with the silos (clearly defined disciplines), shouldn’t we expect climate change be taught in physical sciences or geology rather than biology?

Answer: As a biologist, I’m always really surprised by this question, as there are many people who think that climate change only intersects the Earth sciences. This is a very one-dimensional view and completely ignores not only how climate affects organisms and ecosystems, but also how organisms and ecosystems in turn affect climate. It turns out that many biology teachers across the country agree with me, since we are finding that a significant number of them are teaching about climate change, even when it is not in their state’s science standards.

Question: I think it might be true that among high school science teachers, we see denialism of evolution to a higher degree among physical science teachers than biology teachers. This may not matter too much since evolution is rarely taught in physical science classes, though it certainly can be disparaged or denied there. Since climate change might fall under the preview of physical sciences in some curricula (as would geology and earth systems), will we see a larger amount of, or a new kind of, conflict among the teachers themselves as climate science is more widely addressed? (and by extention among administrators whom we need to support teachers under fire)

Answer: I’m not sure who challenges evolution more, physical science teachers or biology teachers – obviously because evolution is more often covered in biology classes, that is where we tend to hear about it. As for climate change, the challenges that we see actually have less to do with outright denial, and more with teachers genuinely not realizing what the evidence shows or trying to bring in “both sides” as a critical thinking exercise, knowing that the evidence clearly demonstrates that humans are largely responsible for recent climate change. We don’t have students debate “both sides” of whether mermaids exist or that viruses cause disease, so why would we do it with climate change? Plus there are far better questions to ask about climate change, like how it will impact animal migration or the spread of disease, that scientists are actually asking. Why not have students study that?

Question: You note that the motivations for denying evolution vs. for denying climate change are different. But given that there is a link between certain political affiliations and things like secularism (or anti-secularism) there is some overlap in who is involved and to some extent why they deny science. (Denying science is convenient for a lot of reasons.) Are you concerned about future alliances forming in the anti-science world that may strengthen attacks on climate science in public schools?

Answer: Certainly there is cross-over between different groups who disagree with what the scientific consensus shows on climate change and evolution, and alliances can form as a result of that. This can backfire as well though, as many people who deny climate change would bristle at the thought of working with a creationist. They have somehow convinced themselves that with regard to climate change they know better than the overwhelming majority of the scientific community, but when it comes to evolution, of course the scientists are right. It’s a little mind-boggling to imagine, but it is something that we’ve seen quite a bit.

Question: Both evolution and climate science are brought into social sciences (or other non-hard science areas) in schools in the form of debate topics. (see below) Typically these approaches involve the presumption of there really being a debate. Which there isn’t. Is NCSE monitoring this, or addressing this problem in any way?

Answer: We definitely pay attention to these sorts of things, and we are not fans of students debating “both sides” of the science, as it elevates non-science to the same level as science. Although having students debate the science of climate change is clearly counterproductive, having students debate issues in climate change policy is fine. There are a lot of options, from energy efficiency to carbon taxes, making it an ideal topic for a social studies or government class. Climate change is an issue that students will have to deal with as adults, so it makes sense to try to give them practice in a government class on how they will navigate the policy decisions that will need to be made. We’ve seen science teachers connect with social studies teachers to address this issue, where the students learn the actual scientific evidence in their science class and then debate the policy options in their social studies class. This is a totally appropriate approach and is an interesting way of showing students how science can inform policy.

Question: I think nearly all biology teachers know that the official line is that evolution is for real, so even if a biology teacher is a creationist they know that they are going off script to deny (or avoid) evolution. Is this true for climate change? Are teachers who have classes that might include climate science all aware of the fact that climate change is not a scientific issue (it is mainly well established science)? Or are many of these teachers under the impression that there is a debate?

Answer: Unfortunately, there have been many groups who have spent a lot of time and money attempting to undermine the science in the public’s eye, and teachers are just as susceptible to these efforts as anyone else. We’ve rarely run into a teacher who has malicious intent when teaching incorrect information about climate change. What we find more often is that they are not familiar with the evidence or take it on as a critical thinking exercise, having students debate “both sides”. Like I said earlier, we are not big fans of this approach.

For those interested in resources that might be useful to science teachers, or the parents of kids in public schools, see THIS PAGE. For those who wish to know more about the activities of the NCSE, or who are concerned about anything going on in your local school or your child’s classroom, visit the NCSE web site. Also, please not that the NCSE Climate Change Bumper Sticker contest is still seeking submissions!

Should the Smithsonian and Other Museums Blow Off Big Fossil?

Let me start off by saying something you may not know. The big corporations and the 1%ers you have learned to hate fund many of the projects you’ve learned to love. I have not checked lately, but Murdoch and FOX corporation for several years in a row funded at a 50% or 60% level virtually all of the National Geographic specials produced. Major museums known for their great exhibits are often funded by the very corporations or individuals that the people who love those exhibits are (often justifiably) suspicious of. The great importance of private corporate or individual funding is also a factor for art museums, cultural entities like the Opera or Symphony, and of course, sports teams.

This is also true of educational institutions. You see this most obviously at schools of business or management. Say you want to visit the Carlson School of Management at the University of Minnesota. It is named after Curtis Carlson, who was Chair of the Carlson Companies (Radisson). Curt also owned TGI Fridays. You might park in the Toyota Parking lot. Perhaps you are going to a meeting at the Medtronic Dining Room followed by a lecture at the Honeywell Lecture Hall. Later, for entertainment you might catch a game at Target Field, or Target Center, or the Xcel Energy Center. Or perhaps you’ll visit the Opera or Symphony. While you are there, be sure to check out the Wall of Donors to see the numerous large companies (mostly Minnesota based) or wealthy individuals who make big donations there.

Well, OK, you probably already knew that large corporations and wealthy individuals are footing the bill for many of the trappings of our civilization, including educational enterprises, and ranging from academics to high culture to sports.

Lately there has been concern that the mix of large donors and missions of various institutions represents a conflict of interest, especially with regards to climate change and global warming.

We’ve seen the Harvard Smithsonian Center for Astrophysics as a conduit for moving money from Big Fossil (large corporations that depend, we presume, on the rejection of climate change science) to scientists who produce roundly criticized work used by climate change denialist in Congress (via the mechanism of Congressional testimony) to avoid implementing science-sound energy and environmental policies.

It has been argued that the David Koch human evolution exhibit at the Smithsonian inappropriately downplays the critical role of human caused climate change as a problem facing our species. The exhibit does mention future challenges, and a warming planet, but conveniently leaves off the anthropogenic part.

A couple of years back, the University of Minnesota bailed out of showing a documentary on the Mississippi River, which included quite a bit of material on pollution of the river caused by agriculture, allegedly because Big Ag interests pressured the administration. It has been suggested that was only one of several examples of The U bending to the agricultural industry.

Recently there has been a move to ask natural history museums to reduce or eliminate funding from Big Fossil, and to ask folks like the Kochs to not be on their boards of directors. This makes sense because of the potential conflict of interest, but it could also be a form of institutional suicide if the funding from those sources is both very important and irreplaceable.

How much of the science done by major academic institutions is influenced by funding? It makes sense, for example, for Big Ag to fund laboratories, graduate fellowships, and research at these institutions because they benefit from the training and research. But it might also make sense for Big Ag to influence what research is done, perhaps who gets the results, and most importantly perhaps, what research (or results) is NOT funded, or repressed. Same with Big Fossil. Same with Big Pharm. Same with Big Whatever.

And, of course, the same can be said of large museums. I can name one large museum (but I won’t) that totally avoids human evolution (but not necessarily evolution in general) because there are private donors who don’t think humans evolved. The aforementioned human evolution exhibit funded by Koch is probably a mild example of bias. I’ve seen a lot of human evolution exhibits, and so far the few that are quite willing to challenge visitors’ religious or other anti-science beliefs were entirely state funded, as far as I know.

I think it is appropriate to ask the Smithsonian to dump the Kochs and their ilk as donors and board members, because such stark request can form the core of an activist approach that could cause positive change. But I also think we need to recognize the difficult position these institutions are in. We need not only to tell them to change how they do things, but to suggest alternative approaches and facilitate those approaches. Big educational exhibits at museums should routinely be funded by public money, as many already are. Perhaps private donations should be funneled through third parties that are devoid of nefarious intentions and shady ties. One approach in the US might be to tie tax benefits to such a thing. You can get a tax benefit from donating to a museum to produce an exhibit, but you get a better tax benefit if you donate to the NSF or NIH museum exhibit and educational endowments, which are in turn distributed via the usual mechanism of carefully developed requests for proposals with peer review. That would let the Kochs have part of their cake and we (the citizens) get to eat the other part.

The way research, education, and public engagement is funded has become a problem. What do you think? How should we solve this problem?

Publishers Remove Climate Change Denialism From Texas Schoolbooks

I just got this press release for the Texas Freedom Nettwork, passing the good news on to you:

PUBLISHERS REMOVE CLIMATE CHANGE DENIALISM FROM TEXAS TEXTBOOKS; PUT EDUCATION AHEAD OF POLITICS

Texas State Board of Education must still vote on adopting the revised textbooks

FOR IMMEDIATE RELEASE
November 17, 2014

Publishers have agreed to correct or remove inaccurate passages promoting climate change denialism from new social studies textbooks proposed for Texas public schools, a coalition of science and education groups announced this afternoon. This news comes as the State Board of Education prepares for a second public hearing on the proposed textbooks and a final vote on which texts to approve for Texas schools. The textbooks will likely be sold in other states as well.

Publishers Pearson Education, WorldView Software and Studies Weekly Publications had already submitted to Texas education officials revisions to textbook passages that included inaccurate information about climate change. The original passages cast doubt on the overwhelming consensus among climate scientists that climate change is a real and growing threat and that human activity is the primary driver of the problem. Today publisher McGraw-Hill confirmed to the Texas Freedom Network (TFN) that it will remove a deeply problematic lesson that equated unsupported arguments from a special interest-funded political advocacy group, the Heartland Institute, with data-backed material from the Intergovernmental Panel on Climate Change (IPCC), a Nobel-winning organization of scientists from around the world.

“We applaud these publishers for responsibly listening to scholars and the tens of thousands of people from across the country who have signed petitions insisting that the textbooks put education and facts ahead of politics,” TFN President Kathy Miller said today. “We hope they will stand firm in their decision and resist pressure from politicians on the state board to lie to students about one of the biggest challenges facing our planet.”

Petitions calling on publishers to correct their textbooks collected more than 116,000 signatures. The petitions were sponsored by the Texas Freedom Network, National Center for Science Education (NCSE), Climate Parents, Daily Kos and CREDO Mobilize.

Josh Rosenau, programs and policy director at NCSE, also praised the publishers’ decisions to remove the scientifically inaccurate information from their textbooks.

“Pearson, McGraw-Hill, and other publishers did the right thing by making these changes,” Rosenau said. “They listened to us and the nation’s leading scientific and educational societies, ensuring that students will learn the truth about the greatest challenge they’ll confront as citizens of the 21st century. These publishers should be proud.”

Lisa Hoyos, director of the national organization Climate Parents, noted the importance of telling students the truth about climate change at a time when the science is under political attack across the country.

“There is a dangerous attack on climate science in our country, from Congress to the classroom,” Hoyos said. “We are thrilled that Pearson and McGraw Hill chose to stand with students, and to remove misinformation about the causes of climate change from their texts. These publishers need to resist any pushback from climate deniers on the the Texas State Board of Education and to commit to tell nothing but the truth in the materials they produce for our kids.”

The State Board of Education will hold its second public hearing and take a preliminary vote on the proposed textbooks on Tuesday (November 18). The board is set to take a final vote on Friday. The textbooks will go into classrooms beginning in the 2015-16 school year.

Climate Smart and Energy Wise

Climate Smart & Energy Wise: Advancing Science Literacy, Knowledge, and Know-How by Mark McCaffrey is a book written primarily for teachers, to give them the information and tools they need to bring the topic of climate change effectively to their classrooms. It addresses the Climate Literacy and Energy Literacy frameworks, designed to guide teaching this important topic.

The book provides basics on climate and energy, approaches to teaching about climate and energy, and of special interest for teachers, syncing the topics with existing standards. The main point of the book is to get teachers up to speed, but this is not restricted to teachers at a certain level, or for that matter, a certain topic, in that climate change and energy can be incorporated in a very wide range of electives and mainstream classes. The goal of teaching climate literacy is developed by focusing on the “seven essential principles”:

  1. The sun is the primary source of energy for Earth’s climate system.
  2. Climate is regulated by complex interactions among components of the Earth system.
  3. Life on Earth depends on, is shaped by, and affects climate.
  4. Climate varies over space and time through both natural and human processes.
  5. Our understanding of the climate system is improved through observation, theoretical studies, and modeling.
  6. Human activities are impacting the climate system.
  7. Climate change will have consequences for the Earth system and human lives.

And, similarly, there are seven organizing concepts for teaching energy:

  1. Energy is a physical quantity that follows precise natural laws.
  2. Physical processes on Earth are the result of energy flow through the Earth system.
  3. Biological processes depend on energy flow through the Earth system.
  4. Various sources of energy can be used to power human activities, and often this energy must be transferred from source to destination.
  5. Energy decisions are influenced by economic, political, environmental, and social factors.
  6. The amount of energy used by human society depends on many factors.
  7. The quality of life of individuals and societies is affected by energy choices.

There is a chapter on countering denialism, and a chapter on mainstream activism.

Mark McCaffrey is the Programs and Policy Director for these topics at the National Center for Science Education, and this book is an NCSE project. McCaffrey has blogged about the contents of the book on the NCSE blog; his first entry is here. In his own words:

…if well presented and handled with creativity and care, climate and energy issues are ideal interdisciplinary and integrating themes, potentially linking the sciences with mathematics, language arts, geography, history, arts, social studies and civics, and at the college level, bringing in psychology, sociology, writing and rhetoric, philosophy, business…. You get the picture.

Most importantly, climate and energy are topics that are imperative to teach if we are going to effectively respond to these challenges, and make informed climate and energy decisions.

Climate Smart & Energy Wise: Advancing Science Literacy, Knowledge, and Know-How is well written, well laid out, a good read but also an excellent on-the-shelf reference book for educators designing or updating courses. It is coming out later this month and costs only $25.00. A great gift for your favorite teacher!

The figure at the top of the post is from the book.

Who Are The Most Influential African Americans, Ages 25-45?

The Root 100 2014 is seeking your nominations. DEADLINE IS MONDAY. They are

…just about ready to celebrate the innovators, the trailblazers and the influencers in the African-American community who have caught our attention in the past year. [They] will announce The Root 100 of 2014 and celebrate these 25-45-year-olds who are paving the way in politics, entertainment, business, the arts, social justice, science and sports. Right now, it’s your turn to submit nominations for those you think deserve this coveted honor.

There will be many well-known figures on the list, but, each year, The Root 100 seeks to recognize those whose accomplishments may have gone unacknowledged on a national level. Our honorees are ranked according to a scoring system that measures reach and substance. Last year, our No. 1 honoree was then-NAACP President Benjamin Jealous, with about-to-be U.S. Sen. Cory Booker in second place. Both men’s public profiles have changed, so stay tuned to see what happens in 2014.

Other 2013 honorees included MSNBC’s new host Joy-Ann Reid, chef Marcus Samuellsson and Assistant U.S. Attorney Randall Jackson.
We will spend the next weeks collecting names, debating our choices and putting all the names through the stringent criteria we use to determine the best of the best.
The deadline is June 30th for you to weigh in. Submit the names of those you believe are making a difference in the black community. Just fill out The Root 100 2014 nomination form below.

Go HERE to nominate. I suggest a STEM related person.